Строим свой дом по технологии тисэ. Технология тисэ: строим тёплые стены дома своими руками. Последовательность формования половинного блока

В силу того, что изготавливается фундамент ТИСЭ без спецтехники собственными силами индивидуального застройщика, технология достаточно востребована в малоэтажной застройке. Однако, при выборе «Технологии Индивидуального Строительства и Экологии» следует учесть, как ее плюсы, так и недостатки в сравнении с остальными типами фундаментов.

Для удобства ниже приведен сравнительный анализ каждого этапа строительства фундамента ТИСЭ.

Технология ТИСЭ – это столбчатый ростверк с уширением подошвы вертикальных стоек. Для всех столбчатых фундаментов характерны недостатки:

  • они непригодны для влажного грунта (высокий УГВ, болото), свежих насыпей и склонов с перепадом высот больше 1,5 м между противоположными стенами здания;
  • изготовление полноценного подземного или цокольного этажа на столбах невозможно;
  • полы по грунту, считающиеся самым экономичным вариантом, можно изготовить только в низком ростверке, который снижает эксплуатационный ресурс стеновых материалов в отличие от висячего ростверка;
  • при использовании перекрытий в виде плит ПК или по балкам увеличиваются теплопотери, повышается расход утеплителя;
  • коммуникации в подполье следует дополнительно утеплять;
  • для любого ростверка требуется забирка, повышающая смету строительства, так как балки запрещено опирать на грунт.

Техническое решение для свай ТИСЭ на крутом склоне.

Создатель технологии Яковлев основными плюсами посчитал отсутствие спецтехники и минимально возможный бюджет строительства, не уточнив, с чем сравнивался фундамент ТИСЭ. Основным достоинством является уширение подошвы столбов, резко повышающее их несущую способность. Именно за конструкцию бура ТИСЭ, позволяющего увеличить диаметр скважины на забое до 60 см без привлечения спецтехники, автор и получил патент.

Обычный ручной инструмент и оснастка мотобура позволяют пробурить скважины 50 см диаметра максимум. Чтобы изготовить уширение стандартного столба при использовании классической технологии, придется либо отрыть шурф большего размера, либо привлечь ямобур для бурения скважины соответствующего диаметра.

В любом из этих вариантов придется отлить плиту на забое, затем смонтировать опалубку меньшего размера, засыпать пазухи после отвердевания бетона. Несущая способность столба увеличится за счет широкой пяты, но снизится из-за снижения бокового трения с прилежащими к телу столба пластами.

Например, при опирании ТИСЭ на глину каждая вертикальная стойка обладает несущей способностью 10 – 12 т. Это втрое больше, чем у столбов без уширения или винтовых/буронабивных свай.

Таблица: Несущая способность свай ТИСЭ.

Фундамент ТИСЭ уступает прочим технологиям по следующим позициям:

  • позволяет возвести коттедж на влажном грунте;
  • лента пригодна для проектов с цокольным этажом;
  • и винтовые сваи залегают, не просто «ниже отметки промерзания», а доходят до несущего пласта, то есть гораздо надежнее ТИСЭ;
  • – единственная технология, позволяющая возводить стены уже на следующий день, так как бетон внутри их полостей не является конструкционным, а служит лишь для защиты внутренних стенок от коррозии;

Ввиду высокой стоимости геологических изысканий их заменяют пробным вкручиванием винтовой сваи в 3 – 5 местах внутри пятна застройки. Методика позволяет сэкономить (обойдется в 1,5 – 2 тысячи рублей вместо 30 тысяч).

Вынесение натурных осей и земляные работы

Поскольку технология ТИСЭ включает столбы и ростверк, при разметке осей здания необходимо натянуть три шнура. Однако при использовании обносок это не является проблемой. Основные плюсы методики:

  • отсутствие планировки, что характерно для всех ростверков, а не только для ТИСЭ;
  • ремонтопригодность коммуникаций, не проходящих через силовые конструкции фундамента.

На этом этапе недостатки отсутствуют, при необходимости плодородный слой можно снять и применить в ландшафтном дизайне или на грядках.

Бурение, опалубка столбов и ростверка

Самые серьезные недостатки фундамент ТИСЭ выявляет именно на этом этапе:

  • для бурения скважин с куполообразным уширением на забое придется купить оригинальный бур автора методики Р. Яковлева, стоящий 5000 – 6000 рублей на официальном сайте или у дилеров в регионах РФ;
  • либо (точные чертежи в Интернете отсутствуют, так как это интеллектуальная собственность автора);
  • крупные валуны на любой глубине становятся непреодолимым препятствием, бур перемещается в сторону, работа начинается заново, что резко повышает трудозатраты;

Бурение скважин с уширением на забое.

С другой стороны – технология энергонезависимая, скважины можно изготовить в чистом поле и на участке не электрифицированного коттеджного поселка. Кроме бура ТИСЭ инструмента, позволяющего расширить пяту столба, не существует. Достоинства обычно перевешивают минусы, чем и обусловлена популярность методики.

Опалубочные работы идентичны монтажу трубчатой опалубки для буровых (буронабивных) свай. В зависимости от бюджета применяются полиэтиленовые или асбоцементные трубы, свернутый в цилиндр кусок рубероида.

В зависимости от высоты ростверка над землей трудозатраты и расход материалов на изготовление опалубки этого элемента фундамента значительно увеличиваются:

  • низкий ростверк – нижней палубой служит пенополистирол (несъемный вариант) или слой песка (удаляется после отвердевания бетона);

Заливка ростверка с несъемной пенополистирольной нижней палубой.

  • висячий ростверк – фанерный либо дощатый щит на Н-образных стойках.

Поэтому бюджет строительства на данном этапе сопоставим с МЗЛФ, буронабивными сваями и гораздо выше, чем у плиты плавающей (там опалубка нужна только снаружи).

Армирование и бетонирование

Поскольку в строительных нормативах (фундаменты свайные), (основания сооружений/зданий), (проектирование фундаментов) армирование подземных несущих монолитных конструкций является обязательным, фундамент ТИСЭ не является исключением.

Технология армирования имеет следующие нюансы:

Проще всего изготовить арматурный каркас на стройплощадке или купить на стройрынке, чтобы затем поместить его внутрь опалубки, однако в этом варианте невозможно разместить арматуру внутри уширения. Поэтому чаще вертикальные прутки изгибают под прямым углом, опускают внутрь опалубки и заводят в купольную часть пяты уширения, затем обвязывают горизонтальными хомутами, но только в верхней части.

Отсюда вытекают минусы методов – в первом случае остается неармированным уширение, во втором вертикальные прутки могут разойтись на забое при наполнении опалубки бетоном.

Гидроизоляция и забирка

Как и все силовые бетонные конструкции, контактирующие с грунтом или эксплуатирующиеся под землей, фундамент ТИСЭ нуждается в защите от намокания. Все доступные поверхности после распалубки покрываются гидроизоляционными материалами. В этом отношении технология никаких преимуществ индивидуальному застройщику не обеспечивает.

В низком ростверке необходимо защитить расстояние между подошвой балок и грунтом от заполнения землей. Поэтому по бокам устанавливается листовой материал, не подверженный гниению (ЦСП или асбоцементный лист).

Защита ростверка от вспучивания грунта.

В висячем ростверке появляется подполье, функцию защиты его периметра принимает на себя фальш-цоколь (), изготавливаемая из кирпича, профлиста или цокольного сайдинга.

Отмостка и дренаж

Достоинством любого столбчатого или свайного ростверка, в том числе фундамента ТИСЭ является отсутствие необходимости дренажа (пристенного или кольцевого) и утепления отмостки и забирки. Внутри подполья источники тепла отсутствуют, почва полностью промерзает, поэтому теплоизоляция здесь бессмысленна.

Минусы этого этапа строительства общие для всех существующих технологий. Отмостку заливать необходимо, чтобы отвести талые, паводковые воды и осадки от стен здания. Чтобы стоки не размывали прилежащие к отмостке участки плодородной почвы, по наружному ее периметру обычно встраиваются желоба ливневкии, а под вертикальными трубами кровельного водостока монтируются точечные дождеприемники.

Таким образом, фундамент ТИСЭ обходится дороже незаглубленного столбчатого ростверка, стойки которого выложены из кирпича или стенового блока формата 2 х 2 х 4 дм. Из всех прочих технологий с ним соперничает только свайно-винтовой фундамент и ростверк на буронабивных сваях.

Буронабивные сваи - технология, используемая при возведении зданий и сооружений с глубокими фундаментами - многоэтажные промышленные и жилые здания, дорожные развязки, опоры под мосты, эстакады и др., когда существуют большие сосредоточенные горизонтальные и вертикальные нагрузки, а также при сложных условиях строительства.

Буронабивные сваи – это скважины, в которые могут опускаться различные типы металлокаркасов. В скважины под давлением закачивается бетон, песчано-цементная смесь или водоцементный раствор.

Буронабивные сваи устраивают без использования обсадных труб в маловлажных породах. В таком случае бурение можно осуществлять без крепления стенок скважин. В насыщенных водой породах устройство буронабивных свай проводят только под защитой обсадных труб или полимерного или глинистого бурового раствора.

Буронабивные сваи формируются из цемента, срок схватывания которого должен быть не менее 2 ч. Подвижность бетонной смеси обеспечивается подбором ее состава и введением в смесь поверхностно-активных пластифицирующих добавок.

Ленточный и столбчатый фундамент более традиционны и понятны для строительства бань в России, однако более современный буронабивной фундамент имеет целый ряд преимуществ перед ними. А для участков на склонах и с проблемным грунтом это и вовсе – идеальный вариант. И для тех мест, где застройка ведется особо плотная, фундамент на буронабивных сваях позволяет построить даже двухэтажную баню или дом без последствий для грунта и находящихся рядом зданий.

Буронабивные сваи, изготовленные без применения обсадных труб, делаются это следующим способом: в грунте бурят скважину, используя установку вращательного или ударного способа бурения. В процессе бурения используется глинистый раствор, который будет сдавливать стенки скважины, предотвращая тем самым возможность обвала. Также при помощи восходящего потока этого раствора, выносятся частицы разбуренного грунта на поверхность. После этого в нее опускают арматурный каркас, который может устанавливаться либо по всей длине сваи, либо по части длины, либо у самого верха, чтобы связать ее с ростверком.

После этого скважину бетонируют при помощи трубы, которую перемещают постепенно вверх. Поднимая бетонолитную трубу в процессе бетонирования, всегда необходимо помнить и следить, чтобы ее нижний конец был углублен в бетонную смесь минимум на метр. Бетонная смесь, поданная в трубу, уплотняется при помощи вибратора, который закреплен на бетонолитной трубе. Еще один метод бетонирования предполагает использование миксера с бетононасосом. Насос закачивает бетон в скважину, а бетоновод всегда остается в одном и том же положении и извлекается только после окончания бетонирования. Эта методика бетонирования исключает возможность пережима сваи грунтом, обеспечивая при этом высокое качество бетонного покрытия.

Буронабивные сваи, изготовленные с помощью применения обсадных труб, делаются таким способом: бурится скважина, в которую устанавливают свайный каркас-трубу. При этом обсадная труба позволяет перекрыть горизонты плывунных грунтов, а также обеспечивает безопасность при ведении свайных работ, помогает контролировать основные параметры буровой скважины и обеспечивает качественное заполнение скважины бетоном.

Строительство подразумевает четкое следование технологиям. Даже небольшие просчеты приведут к последствиям, в первую очередь пострадает прочность будущего строения. Для того, чтобы избежать такого по истине печального события требуется знать последовательность действий.

Расчет фундамента:

Ширина фундамента должна исходить из толщины будущих стен. Это значит, что каркасное строение не должно обладать мощным нулевым уровнем, потому что стены будут легкими и тонкими. Если собираетесь строить настоящую русскую парную из бруса, то для того,чтобы сделать фундамент своими руками придется делать его больше на 40 мм, ведь самое главное – равномерно распределить нагрузку по всей площади фундамента.

Разметка:

Необходимо понимать, что сваи могут располагаться практически в любом порядке, самое главное, что необходимо обеспечить – равномерность нагрузки. Если собираетесь сделать равномерную нагрузку, то расположение свай может происходить сплошной стеной, в шахматном порядке, либо под определенными участками бани.

Одна скважина выполняется примерно за несколько часов. Это означает, чтобы пробурить несколько скважин для свай, потребуется достаточно долгое время, но как же сэкономить драгоценные часы? Все достаточно просто, необходимо использовать наиболее производительные ямобуры. Считается, что модели японских и корейских производителей самые надежные и быстрые. Поэтому, если вы решили экономить время, то пожертвуйте деньгами и все будет сделано в самые краткие сроки.

Опалубка:

Чтобы продолжать строительство фундамента потребуется создать опалубку, которая необходима для создания скважины. Опалубка необходима в тех регионах, где грунт не плотен, а значит, велика вероятность осыпания. Если же геологические условия нормальные, то можно спокойно обойтись и без создания опалубки, то есть бетон следует лить прямо в скважину, что облегчает процесс в разы. Главное, что необходимо запомнить так это то, что вам потребуется небольшой опалубок на поверхности, именно он будет служить оголовком сваи. В качестве такой опалубки может статья рубероид, свернутый в трубу.

Выбор свай:

Сваи необходимо выбирать так, чтобы они служили еще много лет. Несущая способность должна быть намного лучше и надежнее, чем та, которой обладают забивные сваи. Именно простота конструкций буронабивных свай может ограничить земляные работы, соответственно не необходимо изготавливать большое количество свай, устанавливать можно даже не на каждом квадратном метре.

Изготовление свай процесс довольно легкий, а значит, все можно сделать своими руками. Для этого не требуется особо ничего. Самый главный плюс при изготовлении свай самому это то, что не необходимо думать о том, где складировать сваи. В строительстве очень популярны буронабивные сваи, основание которых имеет диаметр 50 см, это позволяет удерживать примерно пять тонн веса (каждая свая удерживает 5 тонн веса). Такой фундамент может выдержать солидную баню, сделанную из кирпича, которая будет содержать разнообразные архитектурные изыски.

То, что касается изготовления свай, то можно использовать практически любой материал, все зависит только от качества грунта, которое преобладает на участке. Например, если почва состоит из глины и в ней очень много воды, то для того, чтобы установить сваи придется укрепить скважины специальными обсадными трубами, но если бюджет не позволяет, то можно ограничиться глинистым раствором. Благодаря такому способу будут перекрыты горизонты грунтов, и фундамент станет безопасным. Необходимо учитывать, что глубина и ширина скважин подвергается деформациям. А значит, для того, чтобы обеспечить долговечность фундаменту, необходимо серьезно подумать над тем, как противостоять деформациям.

«Подушка»:

«Подушка» для фундамента из буронабивных свай строго обязательно для конструкций такого типа. Чаще всего, выполнение подушки происходит при использовании песка, щебня или бетонной смеси. Подушку необходимо хорошо утрамбовать, а после этого заполнить скважину основным материалом, который обеспечит жесткость конструкции.

Армирование фундамента:

Для того, чтобы придать дополнительную прочность сваям, чаще всего используют арматура, которая при помощи ростверка крепко вливается в единую конструкцию. Чтобы сваи были прочные, необходимо заранее продумать изготовление арматурных каркасов. Для того, чтобы сделать это, понадобиться несколько прутьев диаметром примерно 12 мм, которые связанны особым образом. Применить их можно в качестве готового каркаса, но, если нет времени заморачиваться с изготовлением. То можно использовать треугольные каркасы, которые обычно используются для перекрытий.

На этом этапе подготавливают сваи. Необходимо понимать, что толщина и расположение зависит только от проката бани. Чтобы определить длину, необходимо использовать либо ручной бур, либо мотобур.

Глубина свай не может быть менее 1.5 метра и больше глубины промерзания грунта. Однако требуется знать, что свая должна обязательно заходить на 15 см больше, чем позволяет глубина промерзания грунта на том или ином участке. Именно для этих целей и нужен расчет фундамента. Глубину промерзания можно определить по геологическим картам, а если нет такой возможности, то придется консультироваться со специалистами. Очень важно соблюдать все расчеты, если сваи будут ниже глубины промерзания, то фундамент не «выдавится» как только выпадет снег.

Очень важный момент: над поверхностью должно остаться около полуметра свай. Они будут заполнены бетоном, а после того, как он остынет, сваи необходимо отделать рубероидом и соединить при помощи обвязки.

Заливка бетона:

На этом шаге происходит завершение монтажа свай. Все, что вам необходимо это залить бетон. Чаще всего используют заливку бетона из смесителя. Таким способом можно очень быстро залить большое количество бетона, так что останется много времени на остальные работы.

Заливка должна производиться только быстротвердеющим цементом, который разводится небольшими порциями и каждый раз происходит точно такая же утрамбовка, как и в предыдущий раз.

Идея этого чуда-фундамента в том, что сваи не забиваются с силой в землю и не повреждают слои – они как бы «вырастают» из земли. Говоря более простым языком, в почве пробуравливается скважина, в нее ставится труба или формируется съемная опалубка и все это заполняется строительным раствором. А для слабых грунтов буронабивной фундамент с ростверком бывает и вовсе единственно возможным вариантом. Ведь главная задача любых свай и столбов – опереться на самый твердый слой почвы – на несжимаемый, тот, что всегда находится ниже уровня промерзания грунтовых вод. А он может находиться в силу геологии некоторых регионов достаточно глубоко. Вот как раз буронабивные сваи и достигают такой линии – держа на ней всю нововозведенное сооружение. Сегодня практикуется также и такой более дорогой, но надежный нулевой уровень, как свайный фундамент на буронабивных свай с утеплителем. Для этого используется пенополистирол, который, как известно, имеет жесткую структуру. Фиксируется он прямо на гидроизоляцию и засыпается грунтом. К тому же пенополистирол сам по себе – отличный амортизатор для сил пучения почвы. Главное – даже ленточный фундамент на буронабивных сваях не нарушает коммуникации, которые были установлены на участке ранее. А то, что подвал в таком здании потом не сделать – нельзя считать проблемо. Радует и срок эксплуатации такого фундамента 70-100 лет.

  • Выполнение строительных работ компанией ТИСЭ

    Бригады строителей ТИСЭ с опытом работы построят для вас загородные дома, бани, гаражи, возведут ограждения.

    ТИСЭ - «Технологии Индивидуального Строительства и Экологии» - при использовании доступных материалов обеспечивает высокую надежность возводимого здания.

    Особое внимание мы уделяем фундаменту. При его возведении мы учитываем все необходимые параметры: тип почвы, залегание грунтовых вод, нагрузку, которую фундаменту придется нести. Мы учтем все и предложим оптимальное решение именно для Вас.

    Мы строим дома из дерева, пеноблоков, блоков ТИСЭ.

    Нашу работу отличают высокое качество и привлекательные цены. Вы станете хозяином надежного и красивого дома. Строения, возведенные нашими строительными бригадами, будут давать вам покой, тепло и уют долгие годы.

  • Каркасы буронабивных свай

    Буронабивные сваи – это цилиндрические железобетонные конструкции, часто применяемые при строительстве зданий и сооружений. Основой любой буронабивной сваи – это арматурный каркас, который отвечает за прочность. Таким образом, армирование необходимо для увеличения несущей способности: бетон отлично держит нагрузку на сжатие, а вот с растяжением, которое происходит с нижней частью конструкций, - уже труднее. Именно эта нагрузка на растяжение и возлагается на арматурный каркас в буронабивной сваи, это спасает здания от оседания и трещин на стенах. Второй составляющей буронабивной сваи является бетонное тело. Всем нам хорошо известно, что прочность железобетонных домов - явление невероятное, как говорится в народе: "Ничем не просверлишь, ничем не пробьешь". Дело в том, что при помощи арматуры, уже довольно давно, научились создавать этакий "сплав бетона и железа" – это прочный арматурный каркас, залитый бетоном. Когда грамотно применять этот материал, не жалеть средств и создавать рациональную гидроизоляционную обработку, то армированные конструкции фактически вечны. В случае, когда по проекту Вашего дома фундамент у нас будет свайно-ростверковый, ростверк низкого заглубления в 5 см. Укладка подобного фундамента начинается с установки буронабивных свай, первый шаг к изготовлению буронабивных свай - это изготовление арматурного каркаса. В таком случае арматурный каркас каждой из свай представлял собой 4 стержня ребристой арматуры, которые через каждые 40 см были соединены хомутами, также изготовленные своими силами.

    По техническим рекомендациям по устройству фундаментов из буронабивных свай диаметр арматурного каркаса должен быть на 140 мм меньше диаметра скважины во избежание его заклинивания. С наружной стороны каркас должен иметь ограничители (фиксаторы), обеспечивающие необходимую толщину защитного слоя бетона.

    Под каркасной арматурой для буронабивных свай считается конструкция, произведенная из металлической арматуры. Обыкновенно она создается из прутьев для разных областей армирования ж/б элементов. Арматурные каркасы, используемые для свайного фундамента и ростверка, соединяют посредством косых, а также поперечных прутков, либо специальных хомутов, создавая в итоге цельнометаллическую конструкцию. Перед тем как приступать к созданию такого каркаса для буронабивных свай и ростверка, следует произвести тщательный расчет, по которому подготовить черте.

    Чаще всего армировка свай посредством каркасов клеточного типа находит применение в процессе возведения крупномасштабных промзданий и сооружений, подразумевающих заливку бетона в большом количестве.

    Плоские каркасы - нескольких продольных слоев сетки, сваренных при помощи прутов. При этом продольные прутья дополнительно фиксируются при помощи поперечных либо косых прутьев.

    Весь процесс изготовления арматурного каркаса для буронабивных свай фундамента можно разделить на следующие этапы.

    Заготовка арматуры для свай. Допустим, Вы приобретали одиннадцатиметровую ребристую арматуру диаметром 12 мм, из которой при помощи болгарки и самого обычного маркера было сделано по 3 прутка. Для необходимого количества в 144 штуки было закуплено 48 прутков по 11 метров. Для изготовления 288 хомутов использовали гладкую 6-ти метровую арматуру диаметром 6 мм, расчет делали аналогично. Расчет необходим для того, чтобы определить размер свай и диаметр арматурных элементов. Армокаркасы используют для армировки свайно-ростверкового основания на этапе, предшествующему заливке. При условии, что расчет произведен правильно, это позволяет в некоторой степени повысить прочность изделия и степень его устойчивости к различным механическим нагрузкам.

    Изготовление деревянного шаблона для сборки свай, а именно фиксации продольной арматуры. Скрепляем 2 деревянные доски саморезами. Размечаем на них по известным нам размерам 4 отверстия (стороны хомута), у нас они составляли по 15 см. Сверлим.

    Изготовление хомутов. Для ускорения процесса мы приобрели ручной армагиб, это такое несложное приспособление для быстрого сгибания арматуры. С его помощью мы легко, хотя и не совсем быстро, изготовили 288 хомутов

    Находим место для изготовления арматурного каркаса. На участке мы соорудили 2 простенькие конструкции из деревяшек, на которых можно было с легкостью положить продольную арматуру и без проблем закрепить на них хомуты.

    Классические арматурные каркасы для свай представляют собой вязанную или сварную конструкцию из арматуры различных диаметров. Каркасы повторяют форму будущего бетонного изделия и делятся на плоские и пространственные. Плоские каркасы чаще называют арматурными сетками. Степень насыщенности железобетонных изделий стальной арматурой называется плотностью армирования и характеризуется отношением веса арматуры к объему бетона, в котором она содержится. Армирование ответственных железобетонных конструкций требует плотности 500-600 кг/м3.

    Поперечное армирование хомутами. К каждой свае нам понадобилось по 8 хомутов с шагом 40 см. После того как хомуты разместили на продольной арматуре, размещаем деревянный шаблон, изготовленный заранее. Вяжем арматуру при помощи вязальной проволоки, самодельных хомутов и шуруповерта с крючком.

    Круглые арматурные каркасы широко применяются для армирования буронабивных свай.

    Изготовление арматурных каркасов для свай осуществляется автоматизированно, путем сварки несущих арматурных стержней с навиваемой по кругу арматурой.

    Главный принцип действия оборудования, по созданию круглых арматурных каркасов, состоит в создании спирали (в автоматическом режиме). Для этого используется арматурная проволока из бухты. Накручивание осуществляется по программируемому шагу, непосредственно на продольные арматурные прутья, предварительно установленные в агрегат.

    Каркасы буронабивных свай.

    Для создания каркаса свайно-ростверкового фундамента потребуются следующие материалы:

    • горячекатаная катанка;
    • гладкий арматурный стержень;
    • рифленый арматурный стержень;
    • специальная проволока;
    • бухтовая рифленая арматура
    • бухтовая гладкая арматура

    Металлические прутья в ряде случаев дополнительно покрывают особым противокоррозийным составом. Но чаще изначально предпочитают применять изделия из низкоуглеродистой стали, которые по своим характеристикам не подвержены коррозийному воздействию. Изготовлением армированных каркасов для буронабивных фундаментов могут заниматься, как предприятия, так и специалисты на месте строительства.

    Разнообразные подходы дают возможность делать не только каркасы стандартных форм, но и индивидуальные, расчет которых происходил под конкретное изделие. В последнем случае для выполнения работы требуется тщательно подготовленный чертеж.

    Существует две технологии изготовления каркасов для армирования свай фундамента и ростверка:

    • автоматизирования сборка на предприятии;
    • ручная сборка.

    Каркасы для фундаментов свайного типа

    Обычно для решения таких задач, как армировка свай и ростверка фундамента, используется круглый каркас арматуры. Особенно востребованными армокаркасы оказываются в процессе строительства жилых и промышленных комплексов, а также всевозможных специализированных зданий и сооружений. При этом на этапе заливки фундамента в обязательном порядке применяются стандартные арматурные каркасы для свай, а балки перекрытий производятся из трех- и четырехгранных каркасов.

    Применение буронабивных свай чаще всего практикуется при возведении оснований зданий с существенной глубиной залегания твердого грунта. Преимущества применения каркасов из арматуры для свайно-ростверкового фундамента при этом оказываются совершенно очевидны:

    снижение времени, затрачиваемого на монтаж, в процессе установки железобетонных конструкций;

    • сокращение цикла работ;
    • возможность применения для работы арматурных отходов;
    • повышение работоспособности;
    • повышение уровня рентабельности производства.

    Современные инженеры и строители предпочитают применять два вида каркасов, в том числе арматурных каркасов для буронабивных свай:

    Объемные;

    Плоские.

    Объемные каркасы бывают квадратными или круглыми. Соответственно СНиПУ такие каркасы используются для укрепления буронабивных опор. Диаметры сечений таких металлических конструкций, как правило, колеблется от 8 мм. до 12 мм., диаметр сваи при этом должен быть стабильным - 0,3 м. Объемные каркасы для буронабивных опор активно применяют при заливках особо больших масс бетонного раствора. Сами каркасы принято выполнять, применяя сварные решетки. Решеток должно быть от 3 до 10.

    Плоскими арматурными каркасами являются изделия, которые активно применяются в строительских целях, во время армирования железобетонной конструкции линейного типа. Применение плоского арматурного каркаса значительно снижает затраты за выполненные работы, увеличивая при этом прочностные характеристики. Ведь трещины в такой конструкции не могут образовываться, а вероятность прогиба сводится к нулю.

    Плоские каркасные конструкции представляют собой два и три продольных слоя арматурных сеток, соединенных прутьями. СНиП требует, чтобы прутья соединялись между собой при помощи других прутьев поперечного, наклонного или непрерывного типа.

    Свайные каркасы часто применяются для возведения зданий рядом с уже построенными домами. Это позволяет существенно снизить динамическую нагрузку при закладке нового фундамента. Применение буронабивных свай при создании фундамента позволяет применять методику точечного строительства в тех местах, где использование других технологий оказывается невозможно или затруднительно.

    Применение круглых арматурных каркасов позволяет увеличить скорость монтажа железобетонных конструкций, сократить цикл производственных работ, избавиться от отходов арматуры.

    Основным материалом, который применяется для изготовления каркасов из арматуры, является специальная проволока ВП-1, а также гладкая или горячекатаная катанка, гладкие и рифленые арматурные стержни, рифленая бухтовая арматура, диаметр которой составляет 6-12 мм. Правильные пропорции отдельных компонентов позволяют приготовить крепкий и надежный продукт, который будет полностью отвечать всем необходимым требованиям по эксплуатации.

    Несколько слов о создания решетки и каркаса. Решетки сварного типа соединяют друг с другом при помощи металлических стержней, ориентированных перпендикулярно плоскости ростверка.

    Следует отметить, что такие каркасные конструкции подходят для опор любых диаметров. СНиП позволяет изменять форму и подстраивать ее под необходимый метод производства. Каркас, имеющий особо крупные размеры, осуществляют индивидуально, каркас для буронабивной опоры необходимо изготавливать при помощи автоматизированных сварочных линий.

    Во многих городах России на строительных площадках установлены ограничения на применение забивных свай, фундаменты строятся с помощью применения технологии буронабивных свай. Буронабивная свая изготавливается непосредственно в грунте. В пробуренную скважину устанавливается арматурный каркас и заливается бетонная смесь. После затвердевания бетона и достижения им проектной прочности свая может воспринимать проектные нагрузки.

    Каркасы буронабивных свай могут применяться для строительства зданий различного назначения: производственного, жилого или общественного типа. Применение данного вида свай возможно практически на всех типах грунта, исключением являются скальные и крупнообломочные.

  • Переставные опалубки ТИСЭ

    Переставная опалубка ТИСЭ 1

    Опалубка ТИСЭ 1 используется для кладки стен толщиной 19 см. Ее вес составляет 13 кг. Как правило переставная опалубка ТИСЭ 1 применяется для возведения заборов, внутренних перегородок и гаражей. В ее конструкцию входят все необходимые приспособления и инструменты для возведения стен. Они компактно размещаются в форме. Не зависимо от типа опалубки длина формуемых блоков равняется 51 см, а высота – 15 см.

    Переставная опалубка ТИСЭ 2

    Опалубка ТИСЭ 2 применяется для возведения 25-сантиметровых стен. Ее вес составляет 14 кг. Данный вид опалубки считается наиболее универсальным и часто используемым в строительстве. Благодаря инструментам и оснастке, которые входят в комплект, строители могут формовать сплошные, половинные и пустотные блоки. Также опалубку применяют в качестве тротуарной плитки.

    Переставная опалубка ТИСЭ 3

    Опалубка ТИСЭ 3 используется для возведения стен толщиной 38 см и весом 18 кг. Данный вид опалубки применяется при строительстве подвалов, капитальных и трехслойных стен домов. В процессе возведения стен блок формуется сразу в стене при помощи специальной смеси. При этом его пустотность составляет 45%. Пустоты в последующем либо засыпают утеплителем, либо используются для обустройства шахт вентиляции и прокладки коммуникаций. Особенности конструкции опалубки ТИСЭ 3 позволяют возводить теплые стены без холодовых мостиков, что особенно важно при строительстве домов, предназначенных для круглогодичного проживания.

  • Преимущества технологии ТИСЭ

    • Низкая цена строительства при сохранении высокого качества
    • Высокая прочность стен и фундамента
    • Теплопроводность стен эквивалентна 3 метрам кирпичной кладки (при строительстве 3х-слойной стены)
    • Возможность возведения фундамента на пучинистых грунтах
    • Высокая морозостойкость и прочность блока более 100 тонн на сжатие
    • Возможность строить в стеснённых условиях, без электричества
    • Доступность для индивидуального застройщика, без строительных навыков
    • Низкие затраты на строительные материалы.
    • Возможность начать строительство с низкого стартового капитала.
    • В результате Ваших усилий получится капитальный и тёплый дом, который будет радовать Вас долгие годы.
    • За 25 лет внедрения технологии строительства ТИСЭ дома своими руками себе построили тысячи людей, и до сих пор нет ни одного значимого отрицательного отзыва.

    Технология строительства ТИСЭ - это самая дешевая технология строительства на сегодняшний день. Автор технологии конструктор Яковлев Рашид Николаевич. Уникальность технологии ТИСЭ заключается в том, что купив недорогое оборудование ТИСЭ вы экономите на строительстве дома значительные средства.

    Строить по технологии тисэ можно по разному:

    Заказывая работы по проекту ТИСЭ у строительных бригад или заниматься строительством самостоятельно - решать Вам.

    Почти полностью технология строительства ТИСЭ (технология индивидуального строительства и экология) изложена в книгах "Новые методы строительства - Технология ТИСЭ" и "Универсальный фундамент - Технология ТИСЭ", за исключением приемов строительства,которые были выработаны для улучшения качества технологии и экономии - ими обладают компании, строящие по технологии ТИСЭ или отдельные частные лица.

  • Технология строительства

    Технология строительства ТИСЭ на сегодняшний день это самая дешевая и доступная технология строительства.Уникальность технологии строительства ТИСЭ состоит в том, что купив недорогое оборудование ТИСЭ вы экономите на строительстве дома значительные средства.

    Стены из опалубки по технологии ТИСЭ надёжные и морозостойкие, а фундамент обладает высокой прочностью несущей конструкции и долговечной эксплуатацией на пучинистых и глинистых грунтах.

    Одним из самым главных преимуществ технологии строительства ТИСЭ, является то, что практически каждый человек используя бур и опалубку по технологии ТИСЭ, может не прибегая к услугам профессиональных строителей, построить стены и фундамент дома своими руками. В этом случае дом получается капитальным и максимально доступным финансово, который будет радовать Вас долгие годы.

    За 25 лет успешного внедрения технологии строительства ТИСЭ, дома своими руками себе построили тысячи людей.

  • Технология ТИСЭ Трехслойная стена ТИСЭ-3

    Обзор трехслойной стены построенной по Технология ТИСЭ-3

  • Фундамент по технологии ТИСЭ

  • Фундамент ТИСЭ

    Это универсальный столбчато-ленточный фундамент, который можно применять в любых схемах строительства, в том числе при возведении деревянных, каркасных, кирпичных, блочных домов, бань, гаражей, заборов и т. д.

    Особенностью фундамента ТИСЭ является то, что несущие сваи в своем основании имеют расширение до 0,6 м. Это значительно увеличивает их несущую способность. Очень важно, что сваю не выдавливает в пучинистом грунте.

    Фундаментная лента (ростверк) опирается на сваи, выступающие над грунтом на 15 - 20 см, что исключает давление замершего грунта на ростверк.

    При соблюдении технологии строительства гарантируется устойчивость всей конструкции, её надежность и долговечность.

    Фундамент ТИСЭ можно использовать практически на любых грунтах.

    Дополнительные конструктивные решения делают возможным его применение в зонах повышенной сейсмической активности. Это является ещё одним преимуществом фундамента ТИСЭ по сравнению с другими технологиями.

    Расчет фундамента начинается с анализа грунта. Необходимо знать тип грунта и глубину его промерзания.

    Рассчитывается количество свай, диаметр (200, 250 или 300 мм), длина, а также размеры ростверка.

    Желательно иметь карту участка для более точного расчета.

    После расчета участок размечается и начинается бурение.

    Для этого используется ручной фундаментный бур ТИСЭ-Ф300 ТИСЭ-Ф250, ТИСЭ-Ф200 (диаметр соответственно 300, 250 или 200 мм).

    Расширение создается откидным плугом, при этом грунт ссыпается в чашу бура. Для бура ТИСЭ-Ф300 и ТИСЭ-Ф250 максимальное расширение 600 мм, для бура ТИСЭ-Ф200 - 500 мм.

    Максимальная углубления сваи 2,20 метра

    После заливки можно использовать вибратор для равномерного и более быстрого заполнения пустот раствором.

    Когда все сваи будут готовы, делается ростверк.

    Сначала по уровню строится опалубка, как правило из досок, потом закладывается арматура и вся конструкция заливается бетоном.

    Для схватывания бетона при отрицательных температурах возможно использование специального нагревательного кабеля или химических добавок, которые имеются у нас в ассортименте. Кабель КДБС запитывается от обычной сети 220 В обычной штепсельной вилкой.

  • Фото В. Нефедова
    Создание опор для фундамента:
    а - в скважину помещают арматуру; б - после заполнения бетоном нижней части скважины в нее завели свернутую в трубку пергаминовую рубашку; в - торец столба должен выступать на 15-20 см;
    г - на следующий день торцы опор покрыли битумом; Стены по ТИСЭ-3М:
    а - натягивают шнур;
    б - устанавливают пустотообразо-ватели;
    в - после трамбовки делают распалубку; г - стены армируют «гибкими связями»;


    д, е - для формования коротких блоков используется опалубка-компенсатор Кладка стен:
    а - проемы отделывали кирпичной кладкой;
    б - кладку верхних рядов делали с помостов;
    в - внешние и внутренние стены клали без взаимной перевязки
    Внутренние стены для прокладки в них инженерных коммуникаций армировали прутками арматуры 6 мм; внешние - дорожной сеткой через каждые 4 ряда кладки
    Стены по ТИСЭ-2:
    а - ТИСЭ-2М отличаются перемычкой;


    б, в - засыпка смеси, ее трамбовка и распалубка аналогичны формованию блоков ТИСЭ-3М Организация перекрытий не отличается от других технологий строительства. В чердачном (а) и цокольном (в) уровнях надо предусмотреть утепление из минеральной ваты, для межэтажного (б) - достаточно и песчаной звукоизоляции Под домом располагали приямок из железобетонных колец, трубы были утеплены. Стояки располагали за легкой перегородкой в санузле. Перегородка снабжена створкой, используемой при эксплуатации и монтаже инженерных коммуникаций Для выравнивания и заглаживания боковой поверхности стены используется полутерок. Для создания отверстий при формовании блока были предусмотрены деревянные пустотообразо-ватели План первого этажа План второго этажа
    План мансарды

    Стоимость возведения дома складывается из затрат на строительные материалы, рабочую силу и технику. Технология ТИСЭ, подразумевающая строительство без применения тяжелых подъемно-транспортных машин, на основе дешевых материалов, позволяет значительно снизить общий объем расходов.

    Проект «Надежда»

    Последовательность действий при строительстве двухэтажного коттеджа по технологии ТИСЭ, охватывающей сооружение фундамента и стен здания, мы рассмотрим на примере стандартного проекта "Надежда". Дом рассчитан на круглогодичное проживание семьи из 4-6 человек. Площадь застройки - 81 м 2 , общая площадь - 155 м 2 , жилая - 75,7 м 2 . Коттедж возводился бригадой из четырех человек, время проведения работ - 2,5 месяца.

    Закладка основы

    Перед началом работ провели анализ грунта и определили его тип, поскольку от этого зависит выбор типа фундамента. Почвы на участке оказались пучинистыми, так что фундамент стали сооружать столбчато-ленточный. Конструкция образуется из опор, заглубленных ниже уровня промерзания, и надземной части - ленты-ростверка.

    При создании столбчато-ленточного фундамента использовали ручной фундаментный бур "ТИСЭ-Ф" (цена - 1500 руб.) для выполнения опорных скважин с расширенной полостью на дне. Действия производились двумя рабочими, что позволило значительно снизить стоимость этого этапа строительства.

    Сооружение фундамента начали с бурения скважин под опоры. После этого (на каждую уходило около часа) в нее заводили заранее подготовленную арматуру, выполненную в виде двух U-образных скоб из арматурной стали диаметром 12 мм, расположенных крестообразно. Каждая скоба изготавливалась из прутка арматуры длиной 3 м из расчета, чтобы готовый каркас выступал из скважины на 15-20 см.

    Подушки из песка или гравия при сооружении столбчатого фундамента подобного типа не создаются!

    Затем приступили к заполнению скважины бетоном следующего состава по объемным частям (цемент-песок-щебень-вода): 1: 3: 2: 0,7. При этом использовали цемент марки М400, щебень-гранитный, поскольку пористые материалы (кирпич, известковый щебень, керамзит, шлак и т. п.) существенно снижают морозостойкость фундаментного столба, что в дальнейшем может привести конструкцию в аварийное состояние.

    Перед началом заполнения бетоном у каждой скважины установили колышки-указатели уровня нижней кромки ленты-ростверка. Причем минимальный зазор между грунтом и ростверком должен составлять 15 см (он необходим для последующей усадки дома). Бетон укладывали слоями по 15-20 см и уплотняли тщательным штыкованием. Саму бетонную смесь готовили не более чем на час работы и реализовывали до момента схватывания.

    Опоры фундамента

    При возведении фундамента дома использовали бур "ТИСЭ-Ф" для бурения опорных скважин с расширенной полостью на днеРазмеры скважины, формируемой в земле ручным фундаментным буром "ТИСЭ-Ф": максимальная глубина скважины - 1,9 м; диаметр цилиндрической части скважины - 0,25 м; диаметр расширения нижней части - 0,4; 0,5; 0,6 м.

    Для определения количества и размеров фундаментных столбов, шага их установки провели расчет, в котором учитывали несущую способность грунта, вес дома с эксплуатационной нагрузкой и распределение веса под несущими стенами. Для определения глубины заложения фундаментных столбов необходимо знать глубину промерзания почвы в данном районе (для Москвы - 140 см), тип грунта, уровень грунтовых и паводковых вод и их сезонные изменения.

    Руководствуясь результатами расчетов, приняли следующие характеристики опор: диаметр расширения нижней части - 0,6 м, общая глубина бурения - 1,6 м, шаг установки - 1,5 м. Опоры должны располагаться по углам дома, по периметру и под внутренними несущими стенами первого этажа с заданным шагом (1,5 м). В нашем случае по периметру дома было размещено 24 столба, под внутренними стенами - 20 столбов, то есть для создания подземной части фундамента потребовалось всего 44 столба - опоры.

    После заполнения бетоном нижней части скважины (на 5-10 см выше расширения) в нее завели свернутую в трубку пергаминовую рубашку, которая образовала гладкую часть скважины. Длину заготовки рубашки (1,8 м) приняли из расчета, что она будет выступать из скважины на 15-20 см под верхний обрез забитого колышка - указателя уровня. Затем завершили заполнение скважины бетоном под верхний обрез рубашки.

    На следующий день выступающие торцы опор покрыли битумом (чтобы вода из опор не просачивалась в ростверк и стены). Процесс создания одного столба с учетом времени бурения скважины длился около полутора часов; на все 44 опоры ушла неделя. Когда была закончена последняя опора, приступили к организации горизонтальной перевязки столбов - ленты-ростверка.

    Опалубку под ростверк высотой 40 см и шириной 35 см выполняли из досок. (В общем случае ширина ленты-ростверка определяется шириной возводимой стены и видом цоколя.) Для упрощения создания опалубки по периметру дома сделали технологическую отсыпку из песка под обрез фундаментных столбов, уплотнили ее и укрыли пергамином. В месте расположения торцов опор в пергамине вырезали отверстия под них. Ленту-ростверк армировали прутком диаметром 12 мм - по четыре снизу и сверху по сечению ленты, но не ближе 3 см от края. Для этого в опалубку залили слой бетона толщиной приблизительно 4 см и уложили на него нижние прутки. Далее опалубку заполнили бетоном, не доходя 4 см доверху, и сразу же уложили верхние прутки, после чего долили бетон до конца. Связь между ростверком и опорами появляется только после полной заливки бетона в опалубку: под весом бетона отсыпка проседает примерно на 1 см, благодаря чему опоры проникают в ленту фундамента. Поверхность ленты (после начала затвердевания) тщательно заглаживали и контролировали уровнем - на неровном ростверке делать кладку недопустимо.

    Ленту увлажняли на протяжении недели. Распалубку выполнили через 7 суток, после чего удалили технологическую отсыпку. Тем самым создали зазор между ростверком и грунтом, компенсирующий пучинистые явления. Мнение, будто при сооружении подобного столбчато-ленточного фундамента зазор следует заполнять, является грубейшей ошибкой. Нарушение этого правила обернется тем, что грунт, вспучившись, просто оторвет ленту от опор.

    Приведем объем материалов, использованных для сооружения фундамента. Объем бетона, необходимого для опор и ленты, - 13 м 3 . Общий расход материалов на устройство фундамента: цемент - 3,5 т, песок - 6 м 3 , щебень - 6 м 3 , арматура 12 мм - 480 кг, пергамин - 100 м 2 .

    По ценам середины 2005 г. (г. Москва) стоимость материалов составила около 25 тыс. руб. Общее время возведения фундамента - 10 дней.

    Прочность бетона позволяла уже на следующий день после заливки ростверка приступить к возведению стен по технологии ТИСЭ.

    Модули ТИСЭ

    Модули для возведения стен по этой технологии представляют собой переставную опалубку, позволяющую формовать непосредственно на стене, без подстилающего раствора, пустотелые стеновые блоки из цементно-песчаной смеси с малым количеством воды. Сами модули (ТИСЭ-2М и ТИСЭ-3М) состоят из замкнутой коробчатой формы без дна с толщиной стенок 2 мм и двух пустотообразователей (коробок, вставляемых в форму для создания пустот), зафиксированных в ней съемными штырями - четырьмя поперечными и одним продольным. Также в комплект входит опалубка-компенсатор, предназначенная для изготовления укороченных блоков.

    Все составляющие модуля выполнены из стали. При правильной эксплуатации с его помощью можно отформовать до 10 тысяч стеновых блоков, размеры которых кратны обычной двухрядной кладке «в кирпич» (для ТИСЭ-2М) или «в полтора кирпича» (для ТИСЭ-3М). Это позволяет комбинировать такие стены с традиционными строительными материалами.

    Модуль выпускается в двух основных модификациях, позволяющих создавать блоки следующих размеров (Д В Ш):
    ТИСЭ-2М - 510 150 250 мм (масса - 14 кг);
    ТИСЭ-3М - 510 150 380 мм (масса - 18 кг).

    Модуль ТИСЭ-2М в нашем случае использовался для внутренних стен дома, ТИСЭ-3М - для внешних несущих стен с засыпным утеплителем. Стеновые блоки формовались в следующей последовательности: в форму устанавливали пустотообразователи, фиксировали их, затем в 1-2 приема засыпали смесь и уплотняли трамбовкой. Распалубку (снятие формы с отформованного блока) осуществляли сразу после уплотнения смеси. Один блок создавали за 4-7 минут. Для осуществления распалубки вынимали все фиксирующие штыри и осторожно снимали форму. Плоскости угловых блоков тщательно выверяли по вертикали и горизонтали с применением отвеса и уровня. Для изготовления неполноразмерных блоков в форму закладывали пустотообразователь и перегородку-скребок.

    Возведение стен

    Формование стенового блока выполняется в стене без подстилающего раствора, и начинать кладку блоков можно уже на следующий день после заливки ростверка. Хотим подчеркнуть, что никакого гидроизолирующего слоя между первым рядом блоков и ростверком прокладывать не надо, поскольку просачиванию влаги препятствует слой пергамина между ростверком и торцами опор. Исходя из длины модулей (510 мм) и с учетом межблочных зазоров (около 10 мм), длину стены рекомендуется делать кратной 260 мм (510:2 + 10).

    Следует также заметить, что гладкие стенки модуля переставной опалубки ТИСЭ позволяют сооружать стены с ровной поверхностью, не требующей последующего нанесения штукатурного слоя. Это создает дополнительную экономию на материалах, снижает трудовые и финансовые затраты. Возводить такие стены можно на любых фундаментах.

    Перед началом изготовления блоков первого ряда натягивали шнур. Ориентируясь на него, устанавливали форму. Внешние стены сооружали с помощью модуля ТИСЭ-3М. Возведение начинали с кладки угловых фрагментов стены (для угловой перевязки) из трех стандартных керамических кирпичей, один из которых разбивали пополам. Угловую перевязку можно выполнить и с использованием укороченного стенового блока длиной 12 см, но в нашем случае выбрали «кирпичный» вариант как более декоративный.

    Для создания очередного стенового блока форму модуля ставили вплотную к только что завершенному блоку. При этом пустотообразователи закрепляли в форме так, чтобы с внутренней стороны дома получалась более толстая стенка (11 см), а с наружной - более тонкая (9 см). При выполнении блоков наружных стен для поперечного армирования использовали базальтовые прутки (так называемые "гибкие связи", стоимость 1 шт. - 7 руб.), закладываемые по одному на каждый блок.

    После расходования смеси из одного мешка цемента (8-12 блоков) до ее схватывания приступали к выравниванию и заглаживанию боковой поверхности стены, для чего использовали полутерок. Вертикальные зазоры между блоками, отверстия от поперечных штырей, неровности по горизонтальным швам кладки заполняли цементно-песчаной смесью того же состава. А поскольку особо тщательной затирки и полного заполнения отверстий раствором не требуется, их только прикрывали (на глубину не более 1 см).

    Для монтажа деревянных перекрытий в блоках еще при формовании изготавливали ниши под размещение концов деревянных балок сечением 150 50 мм, устанавливаемых на ребро. Балки цокольного перекрытия опирали непосредственно на ростверк. Опоры балок располагали в месте сопряжения соседних блоков с шагом 520 мм (кратно 260 мм). Для создания ниш при выполнении блока необходимо предусмотреть дополнительный пустотообразователь. Ради этого изготовили съемный деревянный вкладыш высотой 200 и толщиной 50 мм, а его длину подобрали, исходя из типоразмера блока (110 мм для внешних и 45 мм для внутренних стен). При распалубке вкладыш вынули. На следующий день после укладки ряда с проемами под перекрытия установили сами балки, а затем начали формование нового ряда блоков. Так же поступали и при устройстве перекрытий между этажами. Перевязку с внутренними стенами не осуществляли, внутренние и наружные стены возводили независимо друг от друга. Если пространство под завершающий блок было меньше его стандартного размера, такой элемент формовали с применением особой опалубки-компенсатора. Если требовалось поместить блок между другими, созданными ранее, тогда в пустотообразователи не вставляли продольный штырь (иначе его невозможно было бы извлечь из формы при распалубке).

    Прямолинейность стены обеспечивали изготовлением блоков по шнуру. Вертикальность конструкции проверяли через каждые 4 ряда кладки. Если стена "уходила" в сторону, поверхность кладки затирали полутерком так, чтобы устанавливаемая на нее форма приняла требуемое положение. Горизонтальность верхней плоскости каждого отформованного ряда блоков проверяли с помощью уровня. При необходимости ее также затирали. Длина полутерка для боковых стенок - не менее 50 см, для верхней плоскости - не менее 120 см, ширина - 10-15 см. (В дальнейшем следует учитывать, что отверстия под кронштейны нельзя сверлить в местах стыка блоков.)

    Наружные стены должны обладать высокими теплоизолирующими характеристиками. Это можно обеспечить надежным утеплением. В нашем случае применялась схема с засыпным утеплителем: внутри каждого блока создавалась теплая прослойка из пеноизола толщиной 18 см. Такая конструкция по теплосберегающим характеристикам эквивалентна кирпичной кладке толщиной 3 м. Засыпку пеноизола с одновременным его уплотнением тоже проводили через каждые 4 ряда кладки, после проверки вертикальности и горизонтальности стены.

    Рабочая смесь

    Каждого, кто знакомился с технологией ТИСЭ, интересовал состав бетонной смеси. Многих одолевали сомнения: неужели на такой простой оснастке можно отформовать блок, выдерживающий после затвердевания нагрузку более 100 т? Весь секрет кроется в объемном составе смеси, состоящей из цемента М400, песка и воды. Соотношение компонентов цемент-песок-вода: 1: 3: 0,5.

    Песок должен быть не мелким (пылеватым), без примесей глины. Если в его составе окажется много разных фракций размером до 3 мм, полноценная бетонная смесь может получиться при объемном соотношении 1: 4: 0,5. При составлении смеси следует учитывать марку цемента. Так, при марке 500 его количество можно снизить на 20%, но при марке 300 придется на 20% увеличить.

    Количество воды . Поскольку смесь должна получиться жесткой, к количеству добавляемой в нее воды следует отнестись предельно внимательно. При избытке влаги отформованный блок "поплывет", обретет бочкообразную форму, а при недостатке будет после распалубки рассыпаться. Должны заметить, что учитывать надо и естественную влажность песка, длительное время находившегося под открытым небом: после дождя дозировка по воде может существенно повыситься. Тем не менее опыт показывает, что проблем с определением количества воды не возникает - все становится ясно на первых двух-трех блоках. Очевидно, что под сильным дождем формовать блоки нельзя.

    Смесь получили следующим образом. Сначала высыпали и разровняли около половины требуемого объема песка, затем на него высыпали и разровняли мешок цемента, а после - оставшуюся часть песка. Всю смесь перемешали лопатой до приобретения ею равномерного серого цвета (без желтизны песка). После этого из полученного сухого состава сделали горку с углублением посередине, куда залили весь объем воды. Через 1-2 минуты, когда вода впиталась, смесь опять перелопатили, усредняя вязкость. Время приготовления смеси из одного мешка цемента (50 кг) составляло 8-10 минут. На мешок цемента приходилось 12 ведер (10 л) песка и 25 л воды. Смесь следует готовить по мере необходимости, учитывая скорость формования блоков. Не надо запасать продукт впрок, его требуется использовать до момента схватывания, которое наступает через 30-50 минут. Один мешок цемента равномерно расходуется при работе с одним модулем в течение получаса. Объема смеси, приготовленной из одного мешка цемента, хватает на 12 блоков ТИСЭ-2М или 8 блоков ТИСЭ-3М.

    Чтобы внешние стены получались достаточно прочными, их через каждые 4 ряда кладки, сразу после засыпки и трамбовки утеплителя, армировали специальной стеклопластиковой сеткой. Она не создает мостиков холода, исключает просадку насыпного утеплителя и легко раскраивается обычными ножницами. Особо следили, чтобы стыки сеток в стене не располагались по вертикали на одной линии и не приходились на углы, оконные и дверные проемы.

    Формование слоя блоков, образующих дверной или оконный проем, начинали сразу после завершения угловых элементов этого слоя. Блоки возле самих проемов изготавливали с таким расчетом, чтобы почти всегда неизбежные неполноразмерные элементы располагались где-то в середине стены. Ряд под оконным проемом укладывали на арматурную сетку (чтобы усилить конструкцию в зоне проема и заглушить горизонтальный канал стены). Образовавшуюся полость засыпали утеплителем, затем застилали пергамином, а сверху покрывали тонким слоем раствора. Зазор между внутренней и наружной стенками на боковых сторонах окна закрывали доской. У верхних углов проемов кладку не доводили до половины блока, оставляя уступ под опору для перемычки. Полость блока, на которую обопрется перемычка, заполняли бетоном. Перемычки над оконными и дверными проемами выполняли традиционным методом - отливкой железобетонных элементов в опалубке непосредственно на стене (бетон - такой же, как при заливке ростверка). Размеры дверных и оконных проемов делали кратными 26 см (высота окон - 1350 мм, ширина - 1290, 2060, 770, 1540 мм; высота дверей - 2100 мм, ширина - 890, 790, 1030 мм). При монтаже стандартных дверных и оконных коробок в такие проемы устанавливаются компенсирующие доски. Крепление коробок к блокам ТИСЭ осуществляется обычным способом.

    Внутренние стены формовали с помощью модуля ТИСЭ-2М. При этом первый ряд начинали с блоков, смежных с внешними стенами. Пустотообразователи блока внутренней стены фиксировали таким образом, чтобы в нем получались две равные по объему полости, разделенные вертикальной поперечной перегородкой. Для воплощения архитектурного замысла оконные проемы также отделывали элементами кирпичной кладки. Внутренние стены дома армировали прутками арматуры - для каждого ряда применяли по два прутка диаметром 6 мм, располагаемых горизонтально. Это дало возможность использовать вертикальные каналы стен для прокладки в них инженерных коммуникаций. Поскольку блоки монтировали слоями (в день один слой), возведение стен дома длилось два месяца.

    Стропила и фермы крыши соединяли со стенами через брус сечением 150 150 мм, заделанный по периметру внешних стен (мауэрлат). Мауэрлат закрепляли на стене с помощью закладных элементов, выполненных в виде U-образных кусков проволоки диаметром 6 мм. Они располагались по периметру стены с шагом в 1,5 м и бетонировались в полость блока. После окончания строительных работ приступили к монтажу инженерных коммуникаций.

    Перекрытия

    Между балками нижнего перекрытия крепили враспор прутки 5 мм с шагом 40 см. Поверх стелили укрывной материал, клали утеплитель (минвата толщиной 10 см) и тот же укрывной материал. Поверх балок прибивали лаги (брус 5 5 см) с шагом в 50 см, а на них - шпунтованные доски (32 мм), фанеру (6 мм) и линолеум.

    Полы в санузле клали аналогично, вместо лаг стелили шпунтованные доски (28 мм). Поверх - еще слой досок под 45 к балкам перекрытия, укрывали полиэтиленом и заливали бетоном (30 мм) с армированием сеткой. После застывания бетона на клей клали керамическую плитку.

    К балкам между первым и вторым этажом прибивали с боков бруски 4 4 см и далее - черновой пол (20 мм). Все застелили полиэтиленом, на который насыпали песок (7 см). Поверх клали лаги с шагом в 50 см. К ним прибивали шпунтованную доску (32 мм), фанеру и линолеум. К потолку первого этажа прикрепили гипсокартон (12 мм).

    Верхнее перекрытие устроили аналогично нижнему, однако после укладки утеплителя к балкам прибили доски (28 мм).

    Инженерные коммуникации

    В соответствии с принятой схемой в местах монтажа арматуры (выключатели, розетки и т. п.) еще при формовании блоков предусматривали выполнение отверстий под нее. Помимо этого, изготовили деревянные стаканы, размеры которых соответствовали выбранной электроарматуре. При создании блока, в котором предполагалось отверстие, сначала укладывали немного раствора, затем помещали в опалубку стакан и завершали формовку. Стакан извлекали сразу после распалубки. Штатную коробку закрепляли на месте только после выпуска из отверстия всех проводов, задействованных в этом узле.

    Заложение водопроводных труб осуществлялось на глубине, превышающей расчетную глубину промерзания на 0,5 м. На этом уровне трубопровод входил под дом и поднимался через подполье. Под зданием, в зоне ввода коммуникаций, расположили приямок из железобетонного кольца диаметром 1 м. В подпольном пространстве трубопроводы были утеплены минватой.

    Стояки канализации и водоснабжения расположили за легкой перегородкой в ванной комнате. Перегородка была снабжена створкой для монтажа и эксплуатации.

    Стояк канализационной системы выведен выше второго этажа вентиляционным трубопроводом диаметром 50 мм. Вентиляция необходима для правильной эксплуатации септика и нормальной работы водяных затворов на сантехнических приборах.

    Система газоснабжения дома выполнялась по открытой схеме, а не во внутристенных полостях.

    Каналы вытяжной вентиляции тоже проводили по вертикальным каналам внутренних стен. Для каждого помещения создали свой канал, воздуховоды вывели через крышу на улицу. В каждой комнате было заранее предусмотрено отверстие во внутренней стенке блока, располагаемого в верхнем ряду, для монтажа решетки вытяжной вентиляции.

    Приточную вентиляцию организовали через специальные каналы под оконными рамами. Перед установкой окна на верхнюю плоскость подоконной стенки уложили связанные между собой вентиляционные трубки сечением 5 2 см (2 см 2 проходного сечения труб на 1 м 2 помещения).

    Подводя итог, заметим, что, как следует из практического опыта, технология ТИСЭ обеспечивает:

    снижение общих затрат в несколько раз по сравнению с другими строительными технологиями;

    возможность строительства без применения тяжелых подъемно-транспортных средств;

    возможность строительства на неподготовленных строительных площадках (без электричества).

    Укрупненный расчет стоимости работ и материалов по строительству дома общей площадью 155 м 2 , похожего на представленный

    Наименование работ Ед. изм. Кол-во Цена, $ Стоимость, $
    ФУНДАМЕНТНЫЕ РАБОТЫ
    Выноска осей, планировка, разработка и выемка грунта м 3 17 18 306
    Устройство горизонтальной и боковой гидроизоляции м 2 39 8 312
    Устройство фундаментов столбчатых, монолитных железобетонных ростверков м 3 12 60 720
    ВСЕГО 1340
    Цемент т 3,5 70 245
    Щебень гранитный, песок м 3 12 28 336
    Битумно-полимерная мастика, гидростеклоизол м 2 100 3 300
    Арматура, проволока вязальная, пиломатериал и пр. компл. 1 170 170
    ВСЕГО 1050
    СТЕНЫ, ПЕРЕГОРОДКИ, ПЕРЕКРЫТИЯ
    Приготовление бетонного раствора в построечных условиях м 3 78 15 1170
    Кладка стен и перегородок (технология ТИСЭ) м 3 76 75 5700
    Устройство штукатурной сетки на стены м 2 100 2,8 280
    Заливка перемычек проемов пог. м 23 16 368
    Заглаживание поверхностей стен и перегородок м 2 290 1,8 522
    Установка и демонтаж строительных лесов м 2 78 3,4 265
    Устройство перекрытий по каменным стенам м 2 155 12 1860
    Изоляция покрытий и перекрытий утеплителем м 2 260 2 520
    Заполнение проемов оконными блоками м 2 23 35 805
    ВСЕГО 11 490
    Применяемые материалы по разделу
    Цемент т 20 70 1400
    Песок м 3 44 15 660
    Сетка штукатурная стеклотканевая м 2 100 0,5 50
    Базальтовые прутки (гибкие связи) шт. 2300 0,26 598
    Утеплитель м 3 32 40 1280
    Арматура 6 мм кг 70 0,4 28
    Пиломатериал обрезной м 3 9 120 1080
    Пластиковые оконные блоки (двухкамерный стеклопакет) м 2 23 240 5520
    ВСЕГО 10 620
    УСТРОЙСТВО КРОВЛИ
    Монтаж стропильной конструкции м 2 105 10 1050
    Устройство оклеечной пароизоляции м 2 105 3 315
    Устройство металлического покрытия м 2 105 12 1260
    ВСЕГО 2625
    Применяемые материалы по разделу
    Профилированный металлический лист м 2 105 12 1260
    Пиломатериал обрезной м 3 4 120 480
    Паро-, ветро- и гидрозащитные пленки м 2 105 2 210
    ВСЕГО 1950
    ИТОГО стоимость работ 15 460
    ИТОГО стоимость материалов 13 620
    ВСЕГО 29 080

    Мы расскажем о том, как возводят такие стены и в чём их преимущества и недостатки. Из статьи вы узнаете, как происходит формовка блоков на месте и сколько стоит стена, построенная по технологии ТИСЭ.

    Аббревиатура ТИСЭ — технология индивидуального строительства и экономия, говорит сама за себя. Многолетний опыт инженеров позволяет утверждать, что для достижения качественного результата — надёжных и тёплых стен — совсем необязательно приобретать дорогие и «вечные» материалы, достаточно организовать пространство внутри стены. Ведь стены дома — одна из наиболее дорогих и объёмных его частей. На них идёт много материала, при этом решающее значение имеет не их стоимость, а правильное применение.

    Технология ТИСЭ

    Сама идея этого метода довольно проста, но оригинальна — стены возводятся на месте путём заполнения и перестановки опалубки. При этом не требуется подстилающий слой раствора, т. к. жидкая (влажная) смесь соединяется с предыдущим слоем, образуя монолитное соединение. Можно назвать этот процесс формованием блоков на месте.

    Стеновые блоки состоят из стенок и воздушных пазух, которые служат основным теплоизолятором. Соотношение толщины конструктивного материала и воздушной прослойки примерно 1:4. При этом есть возможность заполнять пазухи любым теплоизолирующим материалом — шлаком, опилками, сухой глиной или раствором с пенопластовым шариком.

    Размеры блоков разработаны, исходя из существующих стандартов кирпича — в 1 кирпич для ТИСЭ-2 и 1,5 кирпича для ТИСЭ-3, поэтому их применение вписывается в любой проект. Преимущество перед обычным пустотелым шлакоблоком состоит в том, что блоки ТИСЭ имеют наклонные металлические тяги из проволоки, заложенные в момент формовки. Такое армирование вкупе с кладочной сеткой обеспечивает связку, достаточную для строительства стен в 2 (ТИСЭ-2) и 3 этажа (ТИСЭ-3).

    Опалубка ТИСЭ

    Формы для блоков разработаны с учётом удобства работы оператора и скорости возведения. Значительная экономия времени (в 3 раза быстрее) достигается за счёт того, что блок одновременно формируется и монтируется в проектное положение, а затем сохнет в естественных условиях. Это выгодное решение, если учесть, что для применения шлакоблока его нужно изготовить на заводе, доставить, поднять к рабочему месту и уложить на заранее подготовленный раствор. К тому же качество «заводских» шлакоблоков часто весьма сомнительное.

    Сама форма изготовлена из простых элементов — стальных пластин и уголков, это позволяет ремонтировать и модернизировать ее в соответствии с потребностями конкретного объекта. При достаточном навыке такую опалубку можно изготовить самостоятельно. Принцип формовки «по месту» из плотного раствора не требует установки вибромотора, что позволяет строить стены дома на участках, не подключенных к электросети.

    Примечательно, что опалубку ТИСЭ можно использовать для производства отдельных блоков в домашних условиях. Материалом для раствора может быть буквально любой раствор:

    • опилкобетон, арболит ;
    • раствор на шлаке;
    • «бетон на семечке» (мелком щебне фракции 1-5);
    • цементный раствор с фиброй (для особо прочных блоков первого этажа);
    • глиноцементная смесь с опилками и другие.

    В этом случае вибромотор можно применить, если того требует технология, т. к. станок будет стационарным, а не передвижным.

    Ещё одна особенность данной технологии — отсутствие поперечного ребра, связывающего стенки блока. Это значит, что мостик холода разорван и внутри стены нет перепадов температуры.

    Принцип работы опалубки ТИСЭ-2 и ТИСЭ-3

    Рабочая операция формовки блока практически полностью повторяет процедуру изготовления блоков на самодельных или заводских станках. Материалом для блоков служит жёсткий суховатый раствор любой комбинации, приведённой выше.

    Ход работы:

    1. Смочить контактную поверхность водой.
    2. Установить форму в начальное положение первого блока (на угол).
    3. Вставить поперечные стержни.
    4. Установить ограничители пустот (кубы).
    5. Установить продольный стержень для удержания кубов.
    6. Укладывать смесь в 2-3 этапа, тщательно, но без лишних усилий трамбуя каждый слой.
    7. Установить выжимную рамку (в комплекте).
    8. Извлечь продольный фиксатор (стержень).
    9. При помощи специального рычага (в комплекте) извлечь кубы из опалубки.
    10. Придерживая выжимную рамку, снять стенки опалубки.
    11. Укладывать пластиковую дорожную сетку каждые 3-4 ряда. Зазор между блоками — 10 мм.

    При возведении стен опалубкой ТИСЭ-3 предусмотрено армирование гибкими базальтовыми стержнями, закладка которых производится между этапами 6 и 7. В остальном операции для форм ТИСЭ-2 и ТИСЭ-3 совпадают. На весь процесс без учёта времени приготовления раствора уходит 5-7 минут при среднем уровне и менее 5 минут при развитом навыке.

    Вертикальные швы между блоками желательно затереть сырым раствором до того, как он полностью отвердеет — в конце рабочего дня. Тогда связка блоков будет наилучшей.

    Преимущества стен по технологии ТИСЭ

    Описанный метод возведения стен имеет ряд преимуществ и по праву называется «народным»:

    1. Монолитная конструкция готовой коробки, при условии создания блоков по месту.
    2. Простота монтажа и операций с опалубкой. Технология понятна на интуитивном уровне.
    3. Теплоизоляция. Толщина слоя утепления — 180 мм. Стена ТИСЭ-3 с пазухами, заполненными керамзитом, равна по теплоизоляции кирпичной стене толщиной 1,5 метра, а заполненная пеноизолом — в 3 метра.
    4. Возможность применения подручного материала для изготовления качественных блоков.
    5. Не требуется развитый профессиональный навык.

    Недостатки ТИСЭ:

    1. Относительно медленное возведение стен, по сравнению с кладкой готовых блоков. Это связано с тем, что блок создаётся на месте «с нуля» и добавляются операции по его формовке.
    2. Нестабильность сырого блока. Это условный недостаток — свежесозданный блок легко повредить или деформировать. Однако для внимательного и аккуратного мастера это не будет проблемой.

    Стоимость строительства по технологии ТИСЭ

    Расход материала на 1 кв. м стены ТИСЭ-3:

    1. Цемент — 90 кг.
    2. Песок — 280 кг.
    3. Утеплитель — 0,18 куб. м.
    4. Закладные детали (сетка, скобы) — на 2-3 у. е.

    Если не учитывать стоимость компонентов смеси, которая будет сильно варьироваться в зависимости от местности, наличия собственных материалов и выбранного состава смеси, стоимость стен будет очень низка.

    Стоимость опалубки ТИСЭ:

    1. ТИСЭ-1 — 70 у. е.
    2. ТИСЭ-2 — 75 у. е.
    3. ТИСЭ-3 — 80 у. е.

    Итого окончательная стоимость готовой утеплённой несущей стены — около 23 у. е.

    Представленная технология — одна из наиболее экологичных из тех, что представлены сегодня на рынке. Она примечательна тем, что экономит природные ресурсы, исключает кирпичные и шлакоблочные заводы из процесса производства готовых стен. Используя опалубку ТИСЭ, вы сможете построить дом своей мечты своими руками.

    Универсальный фундамент Технология ТИСЭ Яковлев Р. Н.

    10.1. ВОЗВЕДЕНИЕ СТЕН ПО ТЕХНОЛОГИИ ТИСЭ

    10.1. ВОЗВЕДЕНИЕ СТЕН ПО ТЕХНОЛОГИИ ТИСЭ

    Назначение модуля

    Рис. 187. Формовочный модуль ТИСЭ

    Модуль выпускается в двух модификациях: ТИСЭ-2 и ТИСЭ-3. Они позволяют возводить стены толщиной 25 и 38 см соответственно.

    Модуль имеет размеры (рис. 188) :

    ТИСЭ - 2 (вес 14 кг)….510 х 150 х 250 мм;

    ТИСЭ - 3 (вес 19 кг)….510 х 150 х 380 мм.

    Рис. 188. Габариты формуемых блоков (размеры в мм): А - с модулем ТИСЭ-2; Б - с модулем ТИСЭ-3

    Блоки, изготовленные в стене с помощью модуля, кратны по размерам кладке из обычных стандартных кирпичей.

    Модуль используется в условиях индивидуального строительства и позволяет существенно сократить затраты на возведение стен за счет высокой степени пустотности, отсутствия готовых строительных изделий и кладочного раствора. Для возведения стен не требуется квалификации каменщика, стена сразу получается ровной и не требует нанесения штукатурного слоя.

    Основной состав бетона - песок: цемент = 3:1. Смесь жесткая, с небольшим количеством воды, позволяет выполнять немедленную распалубку сразу после уплотнения ее ручной трамбовкой.

    Высокая прочность и морозостойкость стеновых блоков, отформованных с опалубкой ТИСЭ-2, были подтверждены государственными испытаниями в КТБ "МОСОРГСТРОЙМАТЕРИАЛЫ" (1996 год). Они выдержали более 100 тонн на сжатие, а при испытаниях на морозостойкость прочность блоков снизилась на 4% (по нормам СНиП допускается 15%).

    Наряду с основным составом бетона технологией ТИСЭ предусмотрено применение и бедных смесей с соотношением песок: цемент = 4:1, а также смесей на иных заполнителях, применяемых в строительной практике (опилкобетон, шлакобетон, керамзитобетон, полистиролбетон).

    Устройство модуля

    Модуль состоит из формы, двух съемных пустотообразователей с рукоятками, четырех поперечных и одного продольного штыря, предназначенных для фиксации пустотообразователей в форме (рис. 189) .

    Рис. 189. Детали модуля ТИСЭ: 1 - форма; 2 - пустотообразователь; 3 - поперечный штырь; 4 - продольный штырь; 5 - перегородка–скребок; 6 - выжимная панель–трамбовка; 7 - опалубка–компенсатор; 8 - скоба; 9 - уголок формовочный; 10 - стопор проволочный

    Модуль укомплектован дополнительной оснасткой, применяемой при возведении стен. Отдельные ее элементы имеют двойное назначение. Перегородка–скребок используется и для формования половинных блоков, и для выравнивания верхней границы формуемого изделия. Выжимная панель–трамбовка применяется при распалубке и для уплотнения смеси в качестве ручной трамбовки. Уголок нужен для формования вертикальных пазов и для подъема пустотообразователей. В комплект модуля входит скоба для формования "четверти" по оконным и дверным проемам, а также опалубка–компенсатор для заполнения широких вертикальных зазоров между блоками, которые могут возникнуть в процессе возведения стен. Детали модуля изготовлены из стальных материалов и окрашены цветной эмалью.

    Для удобства транспортировки модуля все детали и приспособления размещаются в форме и надежно фиксируются в ней проволочным стопором, заведенным в отверстия четырех поперечных и одного продольного штырей (рис. 190).

    Рис. 190. Модуль в транспортном положении

    Расход материалов на 1 кв. м стены

    цемент М400 - песок - вода =1 - 3 - 0,6

    ТИСЭ-2 цемент - 60 кг, песок - 0,12 м 3 ;

    ТИСЭ-3 цемент - 90 кг, песок - 0,18 м 3 ;

    цемент М500 - песок - вода =1-4 - 0,7

    ТИСЭ-2 цемент - 50 кг, песок - 0,13 м 3 ;

    ТИСЭ-3 цемент - 75 кг, песок - 0,20 м 3 .

    Последовательность формования стенового блока

    Перед началом формования блоков необходимо смочить поверхность нижнего ряда водой. Это исключит возможность обезвоживания смеси в нижней части формуемых блоков.

    Для формования блока установить форму на расстоянии 0…8 мм от стенки со–седнего ранее отформованного блока, при этом боковые стенки формы, выступающие вниз на 5…7 мм, охватывают нижний ряд блоков, обеспечивая точную ориентацию формы. Затем в неё заводят поперечные штыри, на которые укладывают пустотообразователи, положение которых фиксируется продольным штырем (рис. 187) .

    При возведении стен возникает ситуация, когда стеновой блок формуется между другими ранее отформованными блоками. В этом случае продольный штырь не устанавливается, а пустотообразователи фиксируются в среднем положении самим раствором при трамбовке.

    Смесь в форму закладывается в два приема (рис. 191) .

    Рис. 191. Заполнение формы раствором

    Если закладывать все сразу, то часть смеси теряется, вываливается через край. Кроме того, при полном заполнении формы бетонной смесью нижние слои формуемого стенового блока не получают качественного уплотнения, что становится видно сразу после распалубки.

    Смесь распределяется по объему формы и равномерно уплотняется короткой стороной выжимной панели–трамбовки (рис. 192) . Процесс уплотнения стенового блока длится не более 3 - 4 минут при неторопливой спокойной работе. Удары трамбовки не должны быть излишне сильными.

    Рис. 192. Трамбование раствора

    Излишки смеси снять скребком, одновременно опираясь им на верхнюю плоскость пустотообразователей (рис. 193) .

    Рис. 193. Снятие излишков смеси - выравнивание верхней поверхности блока

    Затем извлечь из формы все штыри и установить на поверхность отформованного блока выжимную панель–трамбовку; завести законцовку уголка в отверстие пустотообразователя и, опираясь о перемычку выжимной панели–трамбовки, приподнять его (рис. 194) .

    Рис. 194. Подъем пустотообразователей

    Теперь на отформованный блок уложить выжимную панель–трамбовку. Приложить пальцы обеих рук к рукояткам и, одновременно нажимая большими пальцами на выжимную панель, приподнять форму, освободив от неё стеновой блок. Форму уложить рядом, на место формования следующего блока. Для удобства выдавливания на выжимную панель можно уложить полутерок (рис. 195) .

    Рис. 195. Подъем формы

    Затереть боковые стенки полутерком можно после формования 5…10 стеновых блоков, после использования очередного мешка цемента (рис. 196) .

    Рис. 196. Затирка боковой поверхности

    Для того чтобы затираемая поверхность в дальнейшем не потребовала нанесения штукатурного слоя, затирку лучше проводить пескоцементным раствором, изготовленным с применением мелкозернистого или просеянного песка, не царапающего свежеуложенные стеновые блоки.

    Обращаем внимание застройщиков на вертикальные зазоры между блоками. Их раствором заполнять не следует, т. к. это не оказывает на прочность стен ни малейшего влияния. Прочность всех каменных кладок обеспечивается только за счет сил сцепления между рядами стеновых изделий. Тот объем раствора, который попадает в щель между соседними стеновыми блоками, оказывается вполне достаточным для герметизации самой щели.

    При налаженной работе цикл формования одного блока с модулем ТИСЭ-2 длится 3,5…4 минуты, а с модулем ТИСЭ-3 - 4…6 минут.

    Последовательность формования половинного блока

    Для формования половинных блоков необходимо оставить один пустотообразователь и установить перегородку с опорой на два поперечных штыря, один из которых войдет в верхнюю пару отверстий формы (рис. 197).

    Рис. 197. Подготовка модуля к формованию половинного блока

    Перед подъемом формы один из поперечных штырей следует ввести в верхнюю пару отверстий, чтобы выжимная панель не заваливала верхний край отформованного блока (рис. 198).

    Рис. 198. Съем формы с половинного блока

    Формование блока с разрывом "мостков холода"

    При возведении стен с повышенными теплоизолирующими характеристиками рассматривают три варианта:

    Утепление снаружи;

    Утепление изнутри, со стороны помещений;

    Заполнение пустот стеновых блоков утеплителем.

    Первые два варианта хорошо освещены в строительной литературе, и мы не будем на этом останавливаться.

    Так как стены по ТИСЭ имеют большую пустотность, то для их утепления лучше применить последний вариант.

    Технологией ТИСЭ предлагается несколько приемов формования "теплых" стеновых блоков. Все они связаны с уменьшением сечения "мостков холода" - поперечных стенок, по которым проходят основные тепловые потоки. Разрыв центральной перемычки стенового блока - наиболее массивного "мостка холода" - самый простой прием улучшения теплоизолирующих характеристик стены (рис. 199, а) . Это можно выполнить с применением съемной деревянной вставки толщиной 5 см или же закладкой несъемного жесткого утеплителя под размер этого зазора.

    Более эффективное средство "утепления" стены включает разрывы всех трех мостков холода, но в более узком исполнении (до 3 см). Это можно выполнить с применением съемных вкладышей или пробойником с заостренным наконечником, которые внедряются в объем перемычек в процессе уплотнения смеси (рис. 199, б) .

    Рис. 199. Стеновые блоки с разрывом "мостков холода": А - разрыв центральной перемычки; Б - разрыв всех перемычек

    Формование блока без "мортков холода"

    Технологией ТИСЭ предусмотрено формование стенового блока без "мостков холода". Если пустотообразователи в модуле ТИСЭ-3 повернуть на 90°, то в объеме формы создается одна общая пустота, разделяющая два сплошных стеновых блока толщиной 11 и 9 см (рис. 200). Часть стенового блока толщиной 11 см располагается со стороны перекрытий, с внутренней стороны стен дома.

    Рис. 200. Стеновой блок без "мостка холода" (размеры в мм): А - подготовка формы; Б - стеновой блок

    Для соединения формуемых блоков между собой в уплотненный бетонный раствор между пустотообразователями внедряют гибкую связь. Ориентируют ее под углом, меняя направление наклона от ряда к ряду (рис. 201). Возведенная таким образом стена представляет собой две бетонные стенки, соединенные между собой пространственной ферменной конструкцией из гибких связей. Воздушный зазор между блоками составляет около 18 см. Этого достаточно для обеспечения самых высоких показателей энергосбережения.

    При возведении стены выше уровня земли гибкие связи не загружены большими силами: они лишь обеспечивают ее устойчивость. В качестве материала для связей можно использовать прутки арматуры диаметром 5…6 мм, но лучше применить базальтовые волокна с загнутыми законцовками (длина 35 см, диаметр 6 мм).

    При наличии боковых нагрузок на стены (если это подвал, бассейн, хранилище сыпучих материалов или, скажем, при повышенной сейсмичности региона…) в гибких связях возникают конкретные усилия, поэтому диаметр их поперечного сечения должен быть не менее 8 мм.

    Рис. 201. Стена без "мостков холода": 1 - стена внутренняя; 2 - утеплитель; 3 - гибкая связь; 4 - сейсмопояс; 5 - песок; 6 - гидроизоляция; 7 - бетонная стяжка; 8 - лента фундамента; 9 - дренажная труба; 10 - песок; 11 - грунт; 12 - отмостка; 13 - перекрытие; 14 - стена внешняя; 15 - стеновой блок; 16 - цокольная панель

    Из книги Универсальный фундамент Технология ТИСЭ автора Яковлев Р. Н.

    Из книги Современные работы по закладке фундамента. Виды работ, материалы, технологии автора

    ЧАСТЬ 2. ФУНДАМЕНТЫ ПО ТЕХНОЛОГИИ ТИСЭ ГЛАВА 4. О ТЕХНОЛОГИИ

    Из книги Внутренняя отделка. Современные материалы и технологии автора Назарова Валентина Ивановна

    6.1. ФУНДАМЕНТНЫЙ БУР ТИСЭ–Ф Фундаментный бур ТИСЭ–Ф выполнен в виде раздвижной штанги, с одной стороны которой расположена перекладина с двумя рукоятками на концах, а с другой - накопитель грунта с двумя режущими кромками, оснащенными резцами (рис. 135). Бур весит 7,5

    Из книги Баня, сауна [Строим своими руками] автора Никитко Иван

    10.2. ОСОБЕННОСТИ ВОЗВЕДЕНИЯ ПОДВАЛОВ ПО ТИСЭ Силовая схема традиционных подвалов включает жесткое перекрытие, замыкающее на себе давление грунта, который окружает стены снаружи. При пучинистых явлениях замерзающий грунт увеличивается в объеме и, становясь

    Loading...Loading...