Комплексный метод тоэ. Пример расчета схемы параллельного соединения проводников

Математическая зависимость основных величин для закона Ома приведена в табл.1

Таблица 1. закон Ома для участка цепи

Участок цепи Формула закона Сопротивление
название расчетная формула
Активное
Емкостное
Индуктивное
Реактивное
Полное
Примечание. I иU – действующие значения

Закон Ома для замкнутой цепи (рис. 1) , где Е – эдс источника тока; - внутреннее сопротивление источника тока; Z – суммарное сопротивление внешней цепи.

Первый закон Кирхгофа: алгебраическая сумма токов в узловой точке электрической цепи рана нулю: (рис. 2,а).


Таблица 2. формулы для определения сопротивлений, индуктивностей и емкостей

Соединение Схема Расчетная формула
Последовательное
Для двух конденсаторов
Параллельное Для двух резисторов

Таблица 9. переходные процессы при включении резисторов R и конденсаторов С

Схема График изменения тока и напряжения Постоянная времени Расчетная формула напряжения тока
Примечание. Е =2,7183 – основание натурального логарифма

Второй закон Кирхгофа: алгебраическая сумма всех эдс в замкнутом контуре равна алгебраической сумме падений напряжений на всех элементах, составляющих цепь: (рис. 2,б)

Закон сложения сопротивлений и проводимостей: при последовательном соединении суммируются сопротивления, при параллельном соединении – проводимости. Расчетные формулы для определения сопротивления R, индуктивностей L и емкостей С приведены в таблице 2.

Переходные процессы возникают в электрической цепи, содержащей индуктивности L и емкости С в период перехода от одного установившегося режима к другому за счет постепенного изменения энергий электрического и магнитного полей.

Первый закон коммутации: в начальный момент после коммута­ции ток в индуктивности остается таким же, каким он был непосред­ственно перед коммутацией, а затем плавно изменяется.

Второй закон коммутации: в начальный момент после коммута­ции напряжение на емкости остается таким же, каким было непо­средственно перед коммутацией, а затем плавно изменяется. Расчет­ные формулы напряжения и тока при замыкании цепи приведены втабл. 3.

ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ

Мгновенные значения электрических колебаний переменного тока и напряжения математически записываются в виде ; где , где , -амплитуда колебаний; - круговая частота; t – время; - начальная фаза. Графическое колебание показано на рис. 3. Основные зависимости параметров синусоидальных колебаний приведены в табл. 4.

Таблица 4. основные зависимости параметров синусоидальных колебаний

Действующие значения синусоидальных тока и напряжения определят по формулам или по показаниям прибора

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА

Электрическая цепь состоит из источника электрической энергии, соединительных проводов и приемников электрической энергии.

Электрический ток, протекающий в электрической цепи, представляет собой направленный поток электронов, возникающий под действием электрического поля.

Силу тока измеряют в амперах (а). Один ампер - это сила то­ка, при которой через поперечное сечение проводника каждую секунду проходит один кулон электричества. В одном кулоне содержится 6,3·10 18 зарядов электрона.

Электродвижущая сила (э. д. с.) источника электрической энергии включенного в цепь, определяется работой, совершаемой им при перемещении электрических зарядов по всей цепи.

Напряжение- часть электродвижущей силы, определяемая работой источника электрической энергии, которая совершается им при перемещении электрических зарядов на участке цепи. Мощность тока определяется работой, производимой (или потребляемой) в одну секунду, и измеряется в ваттах (вт).

Основные и производные формулы для расчета электрических цепей приведены в табл. 5 и 6.

Таблица 5

Основные формулы

Проводники — вещества, в которых при появлении электрического поля возникает электрический ток. Они обладают небольшим удельным сопротивлением и практически без потерь проводят электрический ток. Проводниками являются – металлы и их сплавы, кислоты и щелочи (электролиты).

Лучше всего проводят ток – серебро, медь, золото и алюминий. В силу высокой стоимости серебро и золото применяется только в высокотехнологичных электронных схемах. Медь и алюминий получили большое распространение в качестве проводников. Медь наиболее часто встречающийся проводник, обладает большой устойчивостью к окислению, труднее ломается и постепенно вытесняет алюминий. Алюминий в основном используется в старой проводке.

Диэлектрики – материалы, которые обладают большим удельным сопротивлением к электрическому току.

Диэлектриками являются — пластмасса, резина, бумага, дерево, камень, стекло, текстолит, керамика, фарфор.

Сопротивление

Резистор — элемент электрической цепи, обладающий сопротивлением на пути прохождения электрического тока.

Ом — единица измерения сопротивления. Резистор реагирует на прикладываемое к нему напряжение. Чем больше внешняя поверхность резистора, тем большую мощность он может поглотить.

Провод или резистор, который не может рассеять нужную мощность, сильно нагревается, его сопротивление резко возрастает и в итоге он перегорает. Поэтому на резисторах указывают и другой параметр – рассеиваемую мощность (0,125, 0,25, 0,5, 1, 2,5 и более ватт).

Сопротивление проводника зависит от материала, длины и сечения проводника. При нагреве проводника сопротивление его увеличивается. Чем длиннее проводник, тем больше его сопротивление, но чем больше сечение проводника, тем меньше его сопротивление.

Электрическое напряжение

Разность потенциалов источника электрического тока называется электрическим напряжением. Электрическое напряжение измеряется в вольтах (В). Измеряется вольтметром, который подключается параллельно нагрузке или полюсам источника питания.

Напряжение между линейным и нулевым проводом называется фазное напряжение и равно 220 Вольт (Uф). Напряжение между двумя линейными проводами называется линейное напряжение и равно 380 Вольт (Uл).

Uл=√3Uф=1,73*220В=380В

В обычной сети линейное напряжение 380В, а фазное 220В. Встречаются еще и старые сети, в которых линейное напряжение 220В, а фазное 127В.

Электрический ток — направленное движение электронов от одного полюса замкнутой электрической цепи к другому. Они движутся от отрицательного полюса к положительному. Ток идет в направлении, противоположном движению электронов — от «+» к «-«, от источника тока к потребителю.

Электрический токизмеряется в амперах (А). Измеряется амперметром, который включается в разрыв цепи в том месте, где нужно измерить ток. Ток при работе нагревает провода, возникает электрическое поле. Чем больше ток, тем толще провода.

Переменный ток изменяется с частотой 50 периодов, частота 50 Гц.

Переменный ток с частотой 50 Гц 50 раз в секунду меняет свое направление и величину («+» и «-» меняются 50 раз в секунду) и изменяется по синусоидальному закону.

При переменном токе электроны меняют направление движения, полный цикл смены полярности источника питания называют колебанием.

Период — промежуток времени, в течение которого ток совершает одно полное колебание.

Частота — величина, обратная периоду, число периодов в секунду, измеряется в герцах (Гц).

Ток и напряжение в нагрузке увеличиваются и уменьшаются, а разница между минимальным и максимальным их значением называется амплитудой .

Три одинаковых по частоте и амплитуде переменных тока, сдвинутых по фазе друг относительно друга на 120 градусов или на одну треть периода, образуют трехфазную систему .

Каждая отдельная цепь трехфазной системы сокращенно называется фазой .

Для того, чтобы ток протекал в замкнутой электрической цепи, необходим источник электродвижущей силы, который вырабатывает электрическую энергию.

Постоянный электрический ток

В источниках постоянного тока (батарейках, аккумуляторах), сила тока,напряжение, не меняют своего направления. Если замкнутая электрическая цепь состоит из батарейки и резистора, то батарейка – источник электрической энергии, резистор – приемник электрической энергии, для соединения этих элементов имеются соединительные провода.

Закон Ома

Основной закон в электрике — сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению участка цепи.

Формулы закона Ома: I=U/R, R=U/I, U=I*R

При увеличении напряжения увеличивается ток при одном и том же сопротивлении. Чем больше сопротивление, тем меньше ток при одном и том же
напряжении.

Законы Кирхгофа

Сумма токов входящих в узел, равна сумме токов, выходящих из узла .

Точка, где сходится несколько проводников называется узлом. В любом узле электрической цепи алгебраическая сумма токов равна нулю.


где m – число ветвей подключенных к узлу.

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках .


где n – число источников ЭДС в контуре;
m – число элементов с сопротивлением R к в контуре;
U к = R к I к – напряжение или падение напряжения на к-м элементе контура.

Соединения проводников

Последовательное соединение двух проводников

Формулы для последовательного соединения двух проводников:
Iобщ = I1 = I2
Uобщ = U1 + U2
Rобщ = R1 + R2

Пример расчета схемы последовательного соединения проводников

Известно Uобщ=1В, R1=R2=1Ом, необходимо найти U1 и U2.
Сначала надо найти Rобщ, которое вычисляется по формуле: Rобщ=R1+R2=1+1=2Ом
По закону Ома можно найти Iобщ, который равен I1 и I2 и вычисляется по формуле: Iобщ=Uобщ/Rобщ=1/2=0,5А
Теперь по закону Ома можно найти U1, которое вычисляется по формуле: U1=R1*Iобщ=1*0,5=0,5В
Также по закону Ома можно найти U2, которое вычисляется по формуле: U2=R2*Iобщ=1*0,5=0,5В

Формулы для параллельного соединения двух проводников:
Iобщ = I1 + I2
Uобщ = U1 = U2
Rобщ = 1/R1 + 1/R2 = (R1*R2)/(R1+R2)

Пример расчета схемы параллельного соединения проводников

Известно Uобщ=1В, R1=R2=1Ом, необходимо найти Iобщ.
Сначала надо найти Rобщ, которое вычисляется по формуле: Rобщ=1/R1+1/R2=(R1*R2)/(R1+R2)=(1*1)/(1+1)=1/2=0,5Ом
По закону Ома можно найти Iобщ, который вычисляется по формуле Iобщ=Uобщ/Rобщ=1/0,5=2А

Соотношение токов и напряжений в трехфазных цепях

При соединении звездой:
Iл = Iф, Uл = √3*Uф

При соединении треугольником:
Iл =√3* Iф, Uл = Uф

Аварийные и ненормальные режимы работы электрической сети

Короткое замыкание — если замкнуть два провода, подводящие ток к электрическому прибору (фазу и нейтраль), то ток резко возрастет в 10 раз и более, электропроводка может загореться. Для избежания этого автоматический выключатель должен отключить напряжение в сети.

Перегрузка — сила тока превышает норму для электропроводки за продолжительной время. Для избежания этого автоматический выключатель также должен отключить напряжение.

Отклонение напряжения — в паспорте электрического прибора указано номинальное напряжение, которое обеспечивает его нормальную работу. При увеличении и понижении напряжения нарушается нормальная работа электроприбора и уменьшается его срок службы, при значительном отклонении возможен выход прибора из строя. В этом случае может помочь стабилизатор напряжения.

Скачки напряжения — кратковременное значительное увеличение напряжения. Такое напряжение может вывести из строя домашние электроприборы, в которых много электроники: компьютеры, телевизоры и т.д.. Может возникнуть при ударе молнии в электрические провода или в непосредственной близости от них, также при включении и отключении мощных электроприборов, нарушениях при проведении сварочных работ (в городе редко, в сельской местности чаще).

Перекос напряжения — одни электроприборы оказываются под повышенным напряжением, другие под пониженным. Такой режим возникает в результате неисправности в трехфазной сети, когда напряжения на фазах имеют разную величину.

Электрическая мощность

Энергию, потраченную нагрузкой, называют электрической мощностью , измеряется в ваттах. 1000 ватт равно 1 киловатт (кВт).

Потребители могут подключаться последовательно или параллельно, суммарная мощность все равно будет равна сумме потребляемых мощностей каждым потребителем.

Робщ = Р1+Р2+…Рn

S – полная мощность (кажущаяся), содержит активную и реактивную составляющие, потребляется от источника электроэнергии, измеряется в вольт-амперах (ВА), эта величина указывается на табличках приборов переменного тока.

S = IU = U²/R= √(P2+Q2)

P – активная мощность (эффективная), связана с той электрической энергией, которая может быть преобразована в другие виды энергии – тепловую, световую, механическую и др., измеряется в ваттах (Вт), представляет собой полезную мощность, которую можно использовать для выполнения работы.

P = IUcosф – для однофазной цепи, P = √3IUcosф – для трехфазной цепи, P = U*I — в цепи, где есть только активное сопротивление.

Q – реактивная мощность , связана с обменом электрической энергией между источником и потребителем, измеряется в вольт-амперах реактивных (вар), когда среднее значение мощности за период равно нулю, активная мощность равна нулю, энергия накопленная магнитным полем индуктивности, возвращается назад к источнику, ток в цепи не совершает работы, реактивный ток бесполезно загружает источники энергии и провода линии передач. Источниками реактивной энергии могут являться элементы, обладающие индуктивностью — электродвигатели, трансформаторы. Для того, чтобы уменьшить реактивную мощность на зажимах потребителей подключают конденсаторы (последовательно или параллельно).

Q = IUsinф – для однофазной цепи, Q = √3IUsinф – для трехфазной цепи.

Потребление электроэнергии измеряется в киловатт-часах (кВт-ч).

Количество потреблённой электроэнергии равно произведению мощности электроприбора на время его работы.

Сдвиг по фазе между током и напряжением обозначается углом φ. Коэффициент мощности — величина, равная отношению активной мощности к полной, величина cosф равная углу сдвига фаз между напряжением и током, чем он выше, тем лучше. Надо стараться сделать нагрузку такой, чтобы cosф был близок к единице (на практике 0,85 – 0,9, дальнейшее повышение до 1 экономически не оправдывается).

Некоторые формулы электротехники.

Закон Ома для участка цепи постоянного тока.

I = U/R ,

где U - напряжение, (В), I - сила тока (А), R - сопротивление участка цепи, (Ом).

Сопротивление проводника R, (Ом):

R  (l / S) ,

где S - площадь сечения проводника, (мм²), l - длина проводника, (м), - удельное сопротивление, (Ом · м). Удельное сопротивление материала - это сопротивление проводника с площадью сечения 1 мм² и длиной 1 м.

Если вместо сечения проводника, S , задан его диаметр, D , то сечение, (мм²), находим по формуле:

S = D²/4 , где 3,14

Сопротивление проводника зависит от температуры. Сопротивление R , (Ом), при температуре t , (°C), равно:

Rt = R 0 [ l+ (t - t 0 )] ,

где R 0 , (Ом), - сопротивление при начальной температуре t 0 , (°C); температурный коэффициент, значение которого для некоторых материалов приведено в таблице.

Алюминий

Вольфрам

Сопротивление нескольких проводников зависит от способа их соединения. При параллельном соединении двух резисторов общее сопротивление находим по формуле:

R общ = (R1·R2) / (R1+R2) .

Для трех параллельно соединенных резисторов:

R общ = R1·R2·R3/(R1·R2+R2·R3+R3·R1) .

При последовательном соединении общее сопротивление цепи равно:

R общ = R1+R2+R3 .

Постоянный ток.

Мощность постоянного тока P, (Вт):

P = U² / R .

В случае параллельного соединения нескольких проводников с током при одинаковом напряжении:

I общ = I1 + I2 +…+ I n ;

U общ = U1 = U2 =…= U n .

При последовательном соединении:

I общ = I min ,

где I min - ток наименьшего, по мощности, источника.

U общ = U1+ U2 + ... + U n .

Однофазный переменный ток. Основные параметры цепей.

Однофазный переменный ток промышленной частоты имеет 50 периодов колебаний в секунду, или 50 Гц. Частота переменного тока F , (Гц), равна:

F = 1/T = np/60 ,

где n - частота вращения генератора, (мин -1), p - число пар полюсов генератора. Активная мощность однофазного переменного тока Pa , (Вт):

= UIcos ;

реактивная мощность однофазного переменного тока Q , (вар):

Q = UIsi n ;

кажущаяся мощность однофазного переменного тока S , (ВА):

Если в цепь переменного однофазного тока включено только активное сопротивление (например, нагревательные элементы или электрические лампы), то значение силы тока и мощности в каждый момент времени определяем по закону Ома:

I = U/R ;

P а = UI = I²R = U²/R .

Коэффициент мощности cos в цепи с индуктивной нагрузкой:

cos& = Pа/UI = Pа/S .

Трехфазный переменный ток. Основные параметры цепей.

Трехфазный переменный ток используют для питания большинства промышленных электроприемников. Частота трехфазного переменного тока равна 50 Гц. В трехфазных системах обмотки генератора и электроприемника соединяют по схемам "звезда" или "треугольник". При соединении в звезду концы всех трех обмоток генератора (или электроприемника) объединяют в общую точку, называемую нулевой или нейтралью (рис. 1 ).


При соединении в треугольник начало первой обмотки соединяют с концом второй, начало второй обмотки - с концом третьей и начало третьей - с концом первой обмотки (рис. 2 ). Если от генератора отходят только три провода, то такая система называется трехфазной трехпроводной; если от него отходит еще и четвертый нулевой провод, то систему называют трехфазной четырехпроводной. Трехфазные трехпроводные сети используют для питания трехфазных силовых потребителей, а четырехпроводные сети - для питания преимущественно осветительных и бытовых нагрузок. В трехфазных системах различают фазные и линейные токи и напряжения. При соединении фаз звездой, токи I (линейный) и (фазный) равны. Напряжение равно:

При соединении в треугольник ток I , (А), равен:

Напряжение U , (В), равно:

U = Uф .

Мощность трехфазного переменного тока.

Активная мощность генератора , (Вт):

.

Реактивная мощность генератора Q , (вар):

.

Кажущаяся мощность генератора S , (ВА):

где - угол сдвига фаз между фазным напряжением генератора и током в той же фазе приемника, который равен току линейному при соединении обмоток генератора звездой.

Активная мощность приемника Pп , (Вт):

Реактивная мощность приемника Q , (вар):

где - угол сдвига фаз между фазным напряжением приемника и током в той же фазе приемника, который равен току линейному только при соединении обмоток приемника звездой.

Полная мощность приемника S , (ВА):

Теплота, выделяемая при протекании электрического тока по проводнику.

Количество теплоты Q , (Дж), выделяемой электрическим током в проводнике, находим по формуле:

Q = I²Rt ,

где t - время (сек). При определении теплового действия электрического тока учитываем, что 1 кВт·ч выделяет 864 ккал (3617 кДж) тепла.

Формулы Обозначение и единицы измерения
Закон Ома для участка цепи постоянного тока
1. Напряжение на участке цепи, В U=ІR I - сила тока на этом участке, А; R - сопротивление участке цепи, Ом; U - напряжение на участке цепи, В;
2. Ток на участке цепи, А I=U/R
3. Сопротивление на участке цепи, Ом R=U/I
4. Сопротивление проводника постоянному току, Ом R 0 =ρ ρ - удельное сопротивление, 10 -6 Ом∙м; l - длина, м; S - сечение, мм 2 ;
5. Зависимость активного сопротивления проводника от температуры R=R 1 ∙ R, R 1 - сопротивления проводника соответственно при температурах t и t 1 , 0 С, Ом; α -температурный коэффициент, 1/ 0 С;
6. Общее сопротивление электрической цепи при последовательном соединении сопротивлений R=R 1 +R 2 +R 3 +…+R n R - общее сопротивление цепи, Ом; R 1 ,R 2 ,R 3 …R n - сопротивления n резисторов, Ом;
7. Сопротивление цепи из двух параллельных резисторов R=R 1 ∙R 2 /R 1 +R 2
С - общая емкость конденсаторов, Гн; С 1 ,С 2 ,С 3 … Сn - емкость отдельных конденсаторов цепи, Гн;
10. Мощность постоянного тока, Вт P=UI=I 2 R=U 2 /R I - сила тока в цепи, А; U - напряжение в цепи, В; R - сопротивление, Ом;
11. Энергия электрической цепи, Дж W=Pt P - мощность в цепи, Вт; t - время, с;
12. Тепловой эффект A=0,24∙I 2 ∙R∙t= 0,24∙U∙I∙t A - количество выделяемого тепла, кал; t - время протекания тока; R - сопротивление, Ом;
Закон Ома при переменном токе
13. Ток, А I=U/Z I - ток, А; U - напряжение, В; Z - полное сопротивление в цепи, Ом; - индуктивное сопротивление цепи, Ом; Z= = X L =ωL – индуктивное сопротивление цепи, Ом X C =1/ωC – емкостное сопротивление цепи, Ом ω - угловая частота сети, с -1 ; f - частота переменного тока, Гц; L - индуктивность, Гн; C - емкость, Ф;
14. Напряжение, Вт U=I∙Z
15. Закон Кирхгофа для узла (1-й закон): для замкнутого контура (2-й закон): E= = I i - токи в отдельных ветвях цепи, сходящихся в одной точке, А i=(1,2,3,…); E - ЭДС, действующая в контуре, В; U - напряжение на участке контура, В; Z - полное сопротивление участка, Ом;
16. Распределение тока в двух параллельных ветвях цепи переменного тока I 1 /I 2 = Z 2 /Z 1 I 1 - ток первой цепи, А; I 2 - ток второй цепи, А; Z 1 - сопротивление первой ветви, Ом; Z 2 - сопротивление второй ветви, Ом;
17. Полное сопротивление, Ом Z= R - активное сопротивление, Ом; X L - индуктивное сопротивление, Ом; X C - емкостное сопротивление, Ом;
18. Реактивное (индуктивное) сопротивление, Ом X L =ωL=2 ∙f∙L ω- угловая частота, рад/с; f - частота колебаний, Гц; L - индуктивность, Гн; C - емкость, Ф; X - полное реактивное сопротивление, Ом;
19. Реактивное (емкостное) сопротивление, Ом X C =1/ωL= 1/2 ∙f∙L
20. Полное реактивное сопротивление X= X L - X C
21. Индуктивность катушки, Гн без стального сердечника: L= 10 -8 со стальным сердечником: L= μ 10 -8 n- число витков катушки; S - площадь среднего сечения обмотки, составляющей катушку, см 2 ; l - длина катушки, см; μ - магнитная проницаемость материала сердечника, Гн/м;
22. Закон электромагнитной индукции для синусоидального тока E= 4,44∙f∙ω∙B∙S∙10 -4 E - наведенная ЭДС, В; f - частота, Гц; ω- число витков обмотки; B -индукция магнитная, Тл; S - сечение магнитопровода, см 2 ;
23. Электродинамический эффект тока для двух параллельно расположенных проводников F=I m 1 ∙ I m 2 ∙ ∙10 -7 F - сила, действующая на проводниках, Н; I m 1 , I m 2 - амплитудные значения токов в параллельных проводниках, А; l - длина проводника, см; α - расстояние между проводниками, см;
24. Зависимости для цепи переменного тока ток в цепи: I= I R =I∙cosω I X =I∙ sinω напряжение в цепи: U= U R =U∙ cosω U X =U∙ sinω I - ток в цепи, А; I R - активная составляющая тока, А; I X - реактивная составляющая тока, А; U - напряжение в цепи, В; U R - активная составляющая напряжения, В; U X - реактивная составляющая напряжения, В;
25. Соотношение токов и напряжений в трехфазной системе а) соединение «звезда»: I Л =I Ф, U Л =1,73∙U Ф; б) соединение «треугольник»: U Л = U Ф, I Л =1,73∙I Ф; I Л - ток линейный, А; I Ф - ток фазный, А; U Л - напряжение линейной, В; U Ф - напряжение фазное, В;
26. Коэффициент мощности cos P - реактивная мощность, Вт; S - полная мощность, В∙А; R - активное сопротивление, Ом; Z - полное сопротивление, Ом;
27. Мощность и энергия тока в цепи переменного тока а) цепь однофазного тока: P=I∙U∙ cos , Q=I∙U∙sin , S=IU= ; W R =I∙U∙ cos ∙t; W X = I∙U∙sin ∙t; б) цепь трехфазного тока: P= ∙I∙U∙ cos ; Q= ∙I∙U∙sin ; W R = ∙I∙U∙ cos ∙t; W X = ∙I∙U∙sin ∙t; Q - реактивная мощность, вар; W R - активная энергия, Вт∙ч; W X - реактивная энергия, вар∙ч; t - время протекания тока, ч; S - полная мощность, В∙А;
28. Реактивная мощность конденсатора, Вар Q C =U 2 ∙ω∙C=U 2 ∙2П∙f∙C, где конденсатора, Ф С= I C - ток, протекающий через конденсатор, А; U - напряжение, приложенное к конденсатору, В;
29. Синхронная частота вращения электрической машины, об./мин n= f - частота питающей сети, Гц; p - число пар полюсов машины;
30. Вращающий момент электрической машины, Н∙м M=9,555∙ P - мощность, Вт; n - частота вращения, об./мин;

Приложение 13

Расчёт сложных электрических цепей

В сложных электрических цепях может содержаться несколько замкнутых контуров с любым размещением в них источников энергии и потребителей. Поэтому такие сложные цепи нельзя свести к сочетанию последовательных и параллельных соединений.

Используя законы Ома и Кирхгофа, можно найти распределение токов и напряжений на всех участках любой сложной цепи.

Одним из методов расчёта сложных электрических цепей является метод наложение токов, сущность которого заключается в том, что ток в какой-либо ветви представляет собой алгебраическую сумму токов, создаваемых в ней каждой из ЭДС цепи в отдельности. На рис. изображена цепь, содержащая три источника с ЭДС E 1 , E 2 , E 3 и четыре последовательно соединенных резистора R 1 , R 2 , R 3 , R 4 . Если пренебречь внутренним сопротивлением источников энергии, то общее сопротивление цепи R =R 1 +R 2 +R 3 +R 4 . Допустим сначала, что ЭДС первого источника E 1 0, а второго и третьего E 2 = 0 и E 3 = 0. Затем положим E 2 ≠ 0, а E 1 = 0 и E 3 = 0. И наконец, полагаем E 3 ≠ 0, а E 1 = 0 и E 2 = 0. В первом случаи ток в цепи, совпадающий по направлению с ЭДС E 1 , равен I 1 = E 1 /R; во втором случаи ток в цепи, совпадающий по направлению с ЭДС E 2, равен I 2 = E 2 /R ; в третьем случаи ток равен I 3 = E 3 / R и совпадает по направлению с ЭДС E 3. Так как ЭДС E 1 и E 3 совпадает по направлению в контуре, то и токи I 1 и I 3 также совпадают, а ток I 2 имеет противоположное направление, так как ЭДС E 2 направлена встречно по отношению к ЭДС E 1 и E 3 . Следовательно, ток в цеп равен

I = I 1 I 2 + I 3 = E 1 / R E 2 / R + E 3 / R =

= (E 1 E 2 + E 3 ) / (R 1 + R 2 + R 3 ).

Электрическая цепь с тремя источниками энергии

Направление на любом участке цепи, например между точками а и б ,равно U аб = IR 4 .

При расчёте сложных цепей для определения токов во всех ветвях цепи необходимо знать сопротивления ветвей, а также значение и направление всех ЭДС.

Перед составлением уравнений по законам Кирхгофа следует произвольно задаться направлениями токов в ветвях, показав их на схеме стрелками. Если действительное направления тока в какой-либо ветви противоположно выбранному, то после решения уравнений этот ток получится со знаком « - ». Число необходимых уравнений равно числу неизвестных токов, причём число уравнений, составляемых по первому закону Кирхгофа, должно быть на единицу меньше числа узлов цепи; остальные уравнения составляются по второму закону Кирхгофа, причем следует выбрать наиболее простые контуры и так, чтобы каждый из них содержал хотя бы одну ветвь, не входившую в ранее составленные уравнения.

Расчет сложной цепи с применением уравнений по законам Кирхгофа рассмотрим на примере двух параллельно включенных источников, замкнутых на сопротивление. Пусть ЭДС источников E 1 = E 2 =120B, их внутренние сопротивления R 1 = 3 Ом и R 2 = 6 Ом, сопротивление нагрузки R = 18 Ом.

Так как число неизвестных токов 3, то необходимо составить три уравнения. При двух узловых точках необходимо одно узловое уравнение по первому закону Кирхгофа: I = I 1 + I 2 . Второе уравнение запишем при обходе контура, состоящего из первого источника и сопротивление нагрузки: E 1 = I 1 R 1 + IR . Аналогично запишем третье уравнение: E 2 = I 2 R 2 + IR . Подставляя числовые значения, получим 120 В = 3I 1 + 18I и 120 В = 6I 2 + 18I . ТаккакE 1 E 2 = I 1 R 1 I 2 R 2 = 3I 1 – 6I 2 = 0, тоI 1 = 2I 2 иI = 3I 2 . Подставляя эти значения в выражение для ЭДС E 1 , получим 120 =

2I 2 × 3 + 18 × 3I 2 = 60I 2 , откуда I 2 = 120 / 60 = 2A, I 1 = 2I 2 = 4A, I = I 1 ++ I 2 = 6A.

В сложных электрических цепях, имеющих две узловые точки а и б и состоящих из нескольких параллельно соединенных источников энергии, работающих на общий приемник, удобно использовать метод узловых напряжений. Обозначив потенциалы в узловых точках φа – φб, напряжение между этими точками U можно выразить разностью этих потенциалов, т.е.

U = φа – φб.

а б

Схема к расчету сложно электрической цепи:

а – по методу узловых напряжений;

б – по методу контурных токов

Приняв за положительное направление ЭДС и токов в ветвях от узла, а к узлу б для каждой из ветвей, можно записать равенства: I 1 = (φа – φб – E 1 )/

/ R 1 = (U E 1 )g 1 ; I 2 = (φа – φб – E 2 ) / R 2 = (U E 2 )g 2 ; I 3 = (φа – φб – E 3 ) / / R 3 = (U E 3 )g 3; I = (φа – φб) / R = Ug .

На основании первого закона Кирхгофа для узловой точки имеем I 1 + I 2 + + I 3 +I = 0. Подставим в эту сумму значения токов, найдем

(U E 1 )g 1 + (U + E 2 )g 2 + (U E 3 )g 3 + Ug = 0,

U = (E 1 g 1 E 2 g 2 + E 3 g 3 ) / (g 1 + g 2 + g 3 + g ) =

= Σ Eg / Σ g ,

т.е. узловое напряжение равно алгебраической сумме произведений ЭДС и проводимостей всех параллельных ветвей, деленной на сумму проводимостей всех ветвей. Вычислив по этой формуле узловое напряжение и воспользовавшись выражениями для оков в ветвях, легко определить эти токи.

Для определения токов в сложных цепях, содержащих несколько узловых точек и ЭДС, применяют метод контурных токов. Который дает возможность сократить число уравнений, подлежащих решению. Предполагают, что в ветвях, входящих в состав двух смежных контуров, протекают два контурных тока, первый из которых представляет собой ток одного из смежных контуров, а второй – другого контура. Действительный ток в рассматриваемом участке цепи определяется суммой или разностью этих двух токов в зависимости от взаимного относительного направления.

При использовании метода контурных токов составляют уравнения, исходя из суммы сопротивлений, входящих в состав данного контура, и суммы сопротивлений, входящих в состав ветви, общей для смежных контуров. Первую сумму условно обозначают двойным индексом, например R 11 , R 22 и т.д., а вторую – индексом, содержащим номера контуров, для которых данный участок цепи является общим, например R 12 , R 13 и т.д.

Loading...Loading...