Общие свойства функциональных систем. Понятие о функциональных системах организма (П.К. Анохин). Звенья функциональной системы. Свойства функциональных систем и их значение Что называется функциональной системой

Теория функциональных систем , предложенная П.К.Анохиным, постулирует принципиально новый подход к физиологическим явлениям. Она изменяет традиционное “органное” и открывает картину целостных интегративных функций организма.

Возникнув на основе теории условных И.П.Павлова, теория функциональных систем явилась ее творческим развитием. Вместе с тем в процессе развития самой теории функциональных систем она вышла за рамки классической рефлекторной теории и оформилась в самостоятельный принцип организации физиологических функций. Функциональные системы имеют отличную от рефлекторной дуги циклическую динамическую организацию, вся деятельность составляющих компонентов которой направлена на обеспечение различных приспособительных результатов, полезных для организма и для его взаимодействия с окружающей средой и себе подобными. Любая , согласно представлениям П.К.Анохина, имеет принципиально однотипную организацию и включает следующие общие, притом универсальные для разных функциональных систем периферические и центральные узловые механизмы:

  1. Полезный приспособительный результат как ведущее звено функциональной системы;
  2. результата;
  3. Обратную афферентацию, поступающую от рецепторов результата в центральные образования функциональной системы;
  4. Центральную архитектонику, представляющую избирательное объединение функциональной системой нервных элементов различных уровней;
  5. Исполнительные соматические, вегетативные и эндокринные компоненты, включающие организованное целенаправленное .

С общетеоретической точки функциональные системы представляют саморегулирующиеся организации, динамически и избирательно объединяющие и периферические органы и ткани на основе нервной и для достижения полезных для системы и организма в целом приспособительных результатов. Полезными для организма адаптивными результатами являются в первую очередь обеспечивающие различные стороны метаболических процессов гомеостатические показатели, а также находящиеся за пределами организма результаты поведенческой деятельности, удовлетворяющие различные биологические (метаболические) организма, потребности зоосоциальпых сообществ, социальные и духовные потребности человека.

Функциональные системы строятся прежде всего текущими потребностями живых существ. Они постоянно формируются метаболическими процессами. Кроме того, функциональные системы организма могут складываться под влиянием специальных факторов окружающей организм среды. У человека это в первую очередь факторы социальной среды. Механизмы также могут быть причиной формирования функциональных систем, особенно поведенческого и психического уровней.

Совокупная деятельность множества функциональных систем в их взаимодействии определяет сложные процессы гомеостазиса организма и его взаимодействия со средой обитания.

Функциональные системы представляют, таким образом, единицы интегративной деятельности организма.

Глубинные физиологические процессы, обеспечивающие такой сложный механизм организации поведения с помощью рассудочного мышления, во многом еще не выяснены. На сегодня общая схема формирования такого механизма наиболее точно сформулировал П.К. Анохин в своей гипотезе о функциональную систему.

Большинство сравнительно сложных форм целенаправленного поведения основываются на предыдущем видении цели, задачи и ожидаемого результата действия. В ЦНС можно выделить несколько стадий (этапов) формирования соответствующих механизмов обеспечения такой формы деятельности.

Аферентний синтез.

Первый этап заключается в "аферентному синтезе", что предшествует принятию решения. Он основывается на анализе и синтезе аферентної информации четырех компонентов: биологической мотивации (пищевые, половые, оборонительные и т. п), обстановкової афферентации (окружающая среда), пусковой афферентации (непосредственный стимул) и памяти.

Основным побудительным мотивом формирования аферентного синтеза являются биологически важные мотивации. Они формируют доминантное очаг возбуждения, к которому обращаются остальные компоненты и, в частности, память, что включает как генетически врожденный, так и приобретенный опыт по удовлетворению указанной потребности. Кроме того, в формировании первой стадии поведенческого акта большое значение имеет анализ всей сенсорной импульсации, поступающей. ее можно расчленить на две части: обстановкову (фоновую) и пусковую афферентации. Последний компонент-тот конкретный механизм, который запускает эту и последующие фазы формирования всей системы поведенческого акта.

Ведущую роль как структурное основание осуществления указанных процессов играют лобная и теменная ассоциативные зоны коры (об этом подробнее изложено в предыдущем разделе), в которых выражено процессы конвергенции нервных импульсов от различных образований ЦНС, которые обеспечивают аферентний синтез. Эти процессы дополнительно усиливаются конвергенцией активувальних влияний подкорковых структур и особенно ретикулярной формации аміноспецифічних систем мозга.

Формирование программы действия.

в Результате взаимодействия указанных факторов аферентний синтез формирует программу действия, состоящий из набора рефлекторных команд исполнительных органов (мышц, желез). Например, для двигательных рефлексов исполнительные команды выходят из пирамидных нейронов коры. В таком случае большое значение имеет вигальмовування побочных вариантов поведения, которые могли бы помешать выполнению адекватной реакции.

Акцептор результата действия.

самым Существенным (и спорным) в этой гипотезе считают предположение, что одновременно с указанными выше механизмами формируется так называемый акцептор результата действия, то есть нейронная модель предполагаемого эффекта действия. В обеспечении функционального назначения этого механизма участвуют кольцевые взаимодействия нейронов, которые при выполнении двигательных рефлексов получают импульсную активность от коллатералей пирамидного канала, передает команды к исполнительным органам.

Значение обратных связей в организации функциональных систем.

Выполнение команд (рефлексов) предопределяет результат, параметры которого оцениваются рецепторами. Информация об этом оценивание каналами "обратной связи" поступает в акцептора результата действия. И если эффект совпадает с предыдущей моделью результата, рефлекторные реакции прекращаются, то цель достигнута. Если такого совпадения нет, в программу действия вносятся коррективы, и ефекторне возбуждение способствует удлинению действия. Так происходит до тех пор, пока не будет достигнуто совпадения результата с его предсказуемой моделью. Указанные процессы реализуются ассоциативными зонами коры полушарий большого мозга, где с помощью нейронных ловушек происходит реверберация импульсных потоков, что обеспечивает кратковременное хранение следов интегративной программы.

После выполнения соответствующего поведенческого акта весь этот сложный цепь взаимодействующих нейронов розпалається. Поэтому к названию этого механизма входит слово "функциональный", то есть такой, что создается на время выполнения какой-либо функции. Если достичь полезного результата не удается, это может вызвать проявление негативных эмоций.

Принципиально по такой же схеме в ЦНС могут формироваться не только сложные программы для целенаправленного поведения субъекта, но и для регуляции относительно простых функций организма. Как наглядный пример функции такого рода можно привести механизмы терморегуляции, которые обеспечиваются заданістю параметров температуры в центре терморегуляции - гипоталамусе. То есть место формирования в ЦНС акцептора результата действия определяется самой функцией. Как отмечалось выше, при выполнении сложных движений такой акцептор образуется в корковом отделе двигательного анализатора.

Формирование функциональных систем в процессе деятельности

В соответствии с выбранной целью и сформированным мотивом человек начинает планировать свою деятельность и отдельные действия, поступки. Это планирование происходит параллельно со сбором информации о внешней и внутренней среде, о наличии средств для достижения цели и о своих возможностях, с перебором способов использования средств достижения цели и т.д.

После планирования наступает этап реализации плана, в процессе которой человек совершает ряд двигательных действий, требующих включения в работу многих мышечных групп, а если работа продолжается долго, то и развертывания вегетативных систем, обеспечивающих работающие мышцы энергией и сохранение гомеостаза (внутренней среды организма).

Естественно, чтобы деятельность осуществлялась эффективно, чтобы человек мог достигнуть поставленной цели, требуется упорядочение работы мозга, мышц, вегетативных систем. Достигается это благодаря управлению и регуляции рефлекторных реакций, деятельности и поведения.

Управление – это такая организация процессов, которая обеспечивает достижение целей. Частным случаем управления является регуляция , т.е. обеспечение постоянства состояния системы, деятельности и поведения.

Управление и регуляция деятельностью спортсмена – это не простое реагирование его на внешние стимулы (воздействие тренера, соперника, болельщиков и т.п.) – это «самоуправление». (И.П. Павлов) Он писал, что «человек есть система в высшей степени саморегулирующаяся, сама себя поддерживающая, восстанавливающая и даже совершенствующая». Ведущей системой управления и регуляции у человека является сознание. Однако психическая регуляция невозможна без привлечения и нейрофизиологических механизмов управления и регуляции, в частности без формирования «функциональной системы» (по П.К. Анохину).

П.К. Анохин создал теорию функциональных систем. По его определению системой можно назвать только такой комплекс избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношение приобретают характер взаимодействия компонентов на получение фокусированного полезного результата.

Принципы взаимодействия блоков в функциональной системе

Полезным результатом для функциональной систем может быть ее устойчивое состояние в изменившейся внешней или внутренней1 среде, что называют принципом наименьшего взаимодействия. Суть этого принципа состоит в том, что всякая изолированная система (в том числе и человек) стремиться к успокоению и все происходящие в ней изменения направлены на удаление от возмущающего эту систему воздействия. Система как бы минимизирует взаимодействие со средой. Этот принцип распространяется и на взаимодействие блоков внутри сложной системы. Целесообразность каждого блока сложной системы состоит в наименьшем взаимодействии с остальными блоками. Такая автономность ведет к тому, что каждый блок выполняет свою задачу.

Обучение, которое происходит в процессе тренировки, подчиняется этому принципу. Так, например, известно, что улучшение управляющих воздействий в процессе обучения связано с уменьшением объема информации, необходимой для управления действиями, с формированием более компактных и целевых опознавательных эталонов-образцов, при свертывании операций и двигательных компонентов опознавания. Баскетболист быстрее опознает ситуацию, которая складывается на игровой площадке.

С позиции минимизации объясняются факты расхождения в направленности изменения различных психических функций при состоянии напряженности: наиболее важные для данной деятельности функции повышают уровень функционирования, а менее значимые – снижают.

Таким образом, уменьшение взаимодействия функциональных систем с внешней средой и между блоками в самой системе являются отражением адаптации к условиям существования. Это находит выражение в экономизации сил и средств, затрачиваемых на достижение цели.

Однако следует иметь в виду, что минимизация взаимодействия – это один из этапов в жизни систем, оптимальность, достигнутая лишь для данных условий. Как только условия, меняются для получения нового полезного результата принцип минимального взаимодействия будет мешать приспособлению к изменившейся среде.

А.А.Ухтомский полагал, что принцип наименьшего действия присущ отдельным функциональным единицам в составе сложных систем. Суммарная же деятельность организма не во всех случаях подчиняется этому принципу. Например, предвидение событий заставляет человека уклоняться от пути наименьшего взаимодействия. П.К. Анохин высказывал мысль, что для получения полезного результата системе может пойти на самые большие возмущения во взаимодействии своих компонентов.

Применительно к спортивной деятельности можно сказать, что усиление взаимодействия возникает в связи с использованием новых, более высоких нагрузок, с формированием новых двигательных действий, с переделкой старых, а уменьшение взаимодействий связано с адаптаций функциональных систем к нагрузкам, со стабилизацией техники выполнения упражнений, с возникновением состояния тренированности на данном этапе многолетнего тренировочного процесса.

Блоки функциональной системы и их роль в управлении действиями

Деятельность человека разнообразна как по смыслу и действиям, так и по тем условиям, в которых она протекает. Разные цели, задачи и условия деятельности предъявляют и разные требования к человека и его функциональным системам. Поэтому функциональные системы каждый раз при изменении программы и условий деятельности частично или полностью реорганизуются. Т.е. могут состоять из разного количества блоков, выполняющих свои специфические функции. Это значит, что строение функциональных систем, формирующихся для получения полезных результатов, различно.

Рассмотрим схему управления функциональной системой (20 с). Она состоит из пяти блоков.

А - блок афферентного синтеза; Б – блок принятия решения; В – блок системы программы действия (деятельности); Г – блок исполнения и получения результата; Д – блок обратной связи.

Афферентный синтез осуществляется при взаимодействии четырех факторов:

  • пусковой афферентации; (ПА)
  • обстановочной афферентации; (ОА)
  • памяти; (П)
  • мотивации. (М)

Пусковой сигнал принимается с помощью органов чувств (в виде ощущений) передающим его в нервные центры, – афферентным нервам.

В ЦНС эти сигналы обрабатываются, в результате чего возникает образ объектов и ситуации. «Опознание» пусковой информации происходит с помощью памяти. Переработка в ЦНС пусковой информации имеет прежде всего задачу определить значимость данного сигнала для человека.

Человек должен выбрать, на какие сигналы следует реагировать, а на какие нет. Помогает осуществлять такой выбор механизм доминанты.

Опознание пускового сигнала приводит к появлению «модели потребного будущего» (по Н.А. Бернштейну), т.е., предвидению, что произойдет в будущем. Однако, прежде, чем принять решение человек должен сопоставить пусковую афферентацию и возможные виды реагирования, которые хранятся в памяти. Таким образом, афферентный синтез с учетом обстановочной афферентации необходим для того, чтобы еще до начала действия внести поправки в привычную (закрепленную в прошлом опыте) реакцию. Мотивация, особенно социального характера, либо усиливает реагирование, либо в качестве цензора отменяет намеченное действие.

Программирование действий. Афферентный синтез приводит к размышлению, т.е. сбору сведений для принятия обоснованного решения: что делать? какова цель действия? какая задача? Однако постановка задачи – это еще половина дела, необходим следующий этап управления: определение того как, с помощью каких средств, ресурсов можно решить эту задачу.

Наступает этап программирования деятельности. Принятие решения и программирование деятельности связаны со способностью мозга «заглядывать вперед», т.е. экстраполировать будущее.

Экстраполирование (предвидение) не может быть абсолютным, а носит вероятностный характер. Способность сопоставлять поступающую информацию о ситуации и хранящегося в памяти опыта о прошлом позволяет строить гипотезы о предстоящих событиях, приписывать им ту или иную вероятность.

По окончании программирования следует сигнал к реализации программы и выполнение самой программы (блок «Г»). Обратная связь и сличение. Контроль за действиями осуществляется с помощью обратной афферентации (по П.К. Анохину) или обратной связи (по Н.А. Бернштейну). Обратная связь – это информация о том, что произошло или происходит в данный момент в функциональной системе, как осуществляются действия, каковы их результаты. Обратная связь включает в себя не только сигналы с рецепторов, расположенных в работающих органах. Главное в обратной связи – это получение информации, на какой стадии решения задачи или достижения цели находится в данный момент функциональная система. Зная это, человек может дальше планировать свою деятельность. Для того, чтобы это узнать, надо сличать (сравнивать) информацию, поступающую по каналам обратной связи, с информацией, отражающей, что должно быть. Нервные образования, осуществляющие функцию сличения, названы Н.А. Бернштейном «аппаратом сличения», а П.К. Анохиным «акцептором действия» (блок В на схеме).

В результате этого сравнения возникает сигнал согласования или рассогласования, который передается в программирующий аппарат и учитывается при управлении действием. К исполнительным органам посылается «санкционирующая афферентация». Этот сигнал приводит либо к продолжению действия (если программа не выполнена), либо к остановке (если программа выполнена полностью, либо к переделке программы (если нужный результат при существующей программе не достигается). Важно отметить, что с помощью сличения различных видов информации предсказывается ход действия в предстоящее мгновение, т.е. аппарат сличения помогает осуществлять не только конечный контроль, но и текущий.

Обратная связь позволяет накапливать человеку опыт, что особенно ярко проявляется в тех случаях, когда информация о протекании действия вследствие кратковременности последнего не успевает проанализироваться человеком, а следовательно, не успевает совершиться коррекция по ходу действия. В этом случае обратная информация получается человеком уже после совершения действия путем оживления в памяти следов, а коррекция вносится при программировании повторного действия. Такого рода обратную связь называют «отставной».

Принцип доминанты и управление деятельностью

В условиях, когда к человеку поступает масса разнообразных раздражителей и сигналов, возникает задача отбора из них только имеющих для данной деятельности определяющее значение. Если бы каждая система в один и тот же момент реагировала на любой сигнал, было бы невозможно регулировать деятельность. Избежать хаоса в регуляции позволяет возникновение доминанты, т.е. временно господствующего очага возбуждения.

Впервые состояние доминанты описал А.А. Ухтомский, который установил, что если в одном из центров создается стойкий очаг возбуждения, то раздражение, адресованное в другой центр, вызывает реакцию, соответствующую не этому раздражителю, а стойкому очагу возбуждения. Это состояние он охарактеризовал как временно господствующий рефлекс, которым трансформируется и направляется работа прочих рефлекторных дуг и рефлекторного аппарата в целом.

А.А. Ухтомский сформулировал следующие признаки доминанты:

  • повышенная возбудимость: доминантный очаг отвечает реакцией не только на адекватные для него раздражители, но и индифферентные (безразличные раздражители);
  • стойкость возбуждения: способность доминантного очага находиться длительное время в состоянии возбуждения;
  • способность к суммированию возбуждения: под влиянием посторонних раздражений сила возбуждения в доминантном очаге возрастает;
  • сопряженное торможение: доминантный очаг тормозит другие рефлекторные реакции.

Следует, однако, отметить, что каждый признак сам по себе не характеризует состояние центра как доминантного. Необходимо наличие всех признаков.

Организующая роль доминанты проявляется в синхронизации активности центров, входящих в доминантный очаг, Каждый нервный центр имеет индивидуальный ритм, который при возбуждении дает импульсацию своей, отличной от других частоты. Если сравнивать различные центры друг с другом, то окажется, что они работают не ритмично, асинхронно. Когда же ряд центров начинает обеспечивать выполнение одной и той же функции, их работа проходит более синхронно, в близком ритме.

Однако синхронизация активности нервных центров связана не только с увеличением импульсации, но в случае необходимости и со снижением ее.

К учению А.А. Ухтомского о доминанте существенное дополнение сделано А.М. Ефимовой. Весь период существования доминанты она разделила на четыре этапа.

Первый этап – стадия взаимной корроборации – взаимное усиление уровня возбуждения доминантного и дополнительных очагов возбуждения. На этом этапе доминантный очаг, усиливая свое возбуждение за счет других очагов, способствует росту возбуждения и в недоминантных центрах.

Второй этап – стадия неконцентрированной доминанты, характеризующаяся ослаблением корроборации, причем в большей степени для недоминантных центров. Это приводит к тому, что доминантный очаг подкрепляется сторонними раздражителями, а недоминантные центры не подкрепляются. Однако рефлексы с недоминантных центров на этой стадии проявляются нормально, без угнетения их активности. Этот этап развития доминанты является наиболее типичным для повседневной жизни человека.

Третий этап – стадия концентрированной доминанты, характеризующаяся развитием сильного сопряженного торможения. Теперь с недоминантных центров рефлексы образуются меньше, чем прежде. В жизни такая доминанта встречается у людей, сильно увлеченных каким-либо делом.

Четвертый этап – торможение, затухание доминанты, которое происходит вследствие достижения цели, либо под влиянием появления другой, более сильной доминанты.

Роль доминанты в отборе сигналов имеет огромное значение в деятельности человека. Однако доминанта организует не только отбор сигналов и поиск необходимой для деятельности информации, но и ответную реакцию. Поскольку у функциональной системы, каким предстает человек во время деятельности, в каждый момент времени выход может быть только один, все многообразие осуществления двигательных актов должно быть сведено к одному единственному пути. Это обеспечивается доминантой, открывается лишь тот путь, который в данный момент обладает наибольшей возбудимостью. Созданию доминантного пути способствует мысленное проговаривание плана предстоящего действия, словесная инструкция педагога.

Следует отметить, что наряду с явным проявлением имеется и скрытое доминантное состояние. П.К. Анохин определял доминирование как стационарное поддерживание повышенной возбудимости и готовности к действию. Именно в силу этого свойства доминанта, формирующаяся в высших психических уровнях регуляции, может направлять и определять поведение человека на многие годы, а подчас и на всю жизнь.

Положительная роль доминанты в управлении деятельностью состоит в том, что свойство ее подкрепляться постоянными раздражителями и тормозить другие очаги возбуждения обеспечивает достижение цели даже в неблагоприятных условиях.

Однако всякое положительное явление, в том числе и доминанта, при определенных условиях может превратиться в свою противоположность, о чем хорошо сказал А.А. Ухтомский: «Доминанта, как общая формула, еще ничего не обещает, как общая формула, доминанта говорит лишь то, что из самых умных вещей глупец извлечет повод для продолжения глупостей, а из самых неблагоприятных условий умный извлечет умное». В ряде случаев инертность доминанты может помешать спортсмену быстро и адекватно приспособиться к изменившейся ситуации, сменить план ведения поединка, изменить представление о методике тренировки.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

Понятие о функциональных системах организма (П.К. Анохин). Звенья функциональной системы. Свойства функциональных систем и их значение.

Функциональная система – временное функциональное объединение различных нервных центров,различных органов и тканей,различных физиологических систем во имя достижения конечного полезного приспособительного результата.

Функциональная система включает в себя:

1) конечный полезный приспособительный результат – системообразующий фактор. 3 вида: а)биол.константы внутр.среды организма(т.тела,ур.глюкозы), б) поведенческие реакции,направленные на удовлетворение биол.потребностей(в еде,пище), в) поведенческие реакции,напр.на удовлетворение соц потребностей.

2) центральное звено – сов-сть нейронов в пределах ЦНС,которые получают афферентные импульсы от рецепторов и в центральном звене решаются вопросы(что делать,когда и как)

3) исполнител.звено– это органы эффекторы,гормональные компоненты,вегетативные компоненты НС,поведенческие реакции,внутренние органы.

4) обратная афферентация-поставляется информация от рецептора в центральное звено

функциональной системы. Если имеются рассогласования между эталоном и полученным результатом,то кон.полезный результат не достигнут и ФС продолжает функционировать.

Если нет рассогласованности,то конечный результат достигнут и ФС распадается.

Свойства функциональной системы:

1) динамичность. Закл в том,что ФС-образование временное.

2) способность к саморегуляции. При отклонении регулируемой величины или конечного

полезного результата от оптимальной величины происходит ряд реакций

самопроизвольного комплекса, что возвращает показатели на оптимальный уровень.

Саморегуляция осуществляется при наличии обратной связи.

Значение: на основе ФС осуществляется самая сложная рефлекторная регуляция организма.

2. Структурно-функциональная характеристика эритроцитов. Физиологические свойства и функции эритроцитов, Количество эритроцитов. Скорость оседания эритроцитов и факторы на нее влияющие.Значение определения СОЭ для клиники.

Методичка КРОВЬ стр 13 и 33.

Химические синапсы: холинергические, адренергические, гистаминергические, пуринергические и ГАМК-ергические, их функциональные отличия.

Синапсом называется место контакта нервной клетки с другим нейроном или исполнительным органом. Все синапсы делятся на следующие группы:

1. По механизму передачи: а. электрические. В них возбуждение передается посредством электрического поля. Поэтому оно может передаваться в обе стороны. Их в ЦНС мало; б. химические. Возбуждение через них передается с помощью ФАВ – нейромедиатора. Их в ЦНС большинство; в. смешанные (электрохимические).

2. По локализации: а. центральные, расположенные в ЦНС; б. периферические, находящиеся вне ее. Это нервно-мышечные синапсы и синапсы периферических отделов вегетативной нервной системы.

3. По физиологическому значению: а. возбуждающие; б. тормозные.

4. В зависимости от нейромедиатора, используемого для передачи: а. холинергические – медиатор ацетилхолин (АХ); б. адренергические – норадреналин (НА); в. серотонинергические – серотонин (СТ); г. глицинергические – аминокислота глицин (ГЛИ); д. ГАМК-ергические – гамма-аминомасляная кислота (ГАМК); е. дофаминергические – дофамин (ДА); ж. пептидергические – медиаторами являются нейропептиды. В частности роль нейромедиаторов выполняют вещество Р, опиоидный пептид в-эндорфин и др. Предполагают, что имеются синапсы, где функции медиатора выполняют гистамин, АТФ, глутамат, аспартат, ряд местных пептидных гормонов.

5. По месту расположения синапса: а. аксо-дендритные (между аксоном одного и дендритом второго нейрона); б. аксо-аксональные ; в. аксо-соматические ; г. дендро-соматические ; д. дендро-дендритные. Наиболее часто встречаются три первых типа. Строение всех химических синапсов имеет принципиальное сходство.

Например, аксо-дендритный синапс состоит из следующих элементов:

1. пресинаптическое окончание или терминаль (конец аксона);

2. синаптическая бляшка , утолщение окончания;

3. пресинаптическая мембрана , покрывающая пресинаптическое окончание;

4. синаптические пузырьки в бляшке, которые содержат нейромедиатор;

5. постсинаптическая мембрана , покрывающая участок дендрита, прилегающий к бляшке; 6. синаптическая щель , разделяющая пре- и постсинаптическую мембраны, шириной 10-50 нМ;

7. хеморецепторы – белки, встроенные в постсинаптическую мембрану и специфичные для нейромедиатора.

Например, в холинергических синапсах это холинорецепторы, адренергических – адренорецепторы и т.д. Простые нейромедиаторы синтезируются в пресинаптических окончаниях, пептидные – в соме нейронов, а затем по аксонам транспортируются в окончания.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2

Фазы деятельности сердца, их происхождение и значение. Компоненты систолы и диастолы желудочков. Общая пауза в деятельности сердца.

Методичка КРОВООБРАЩЕНИЕ стр.3

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3

Гладкие мышцы, их строение и иннервация, физиологические свойства, функциональные особенности. Функции гладких мышц.

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы образованы клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной исчерченности. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением – нексусами , что обеспечивает распространение возбуждения по всей гладкомышечной структуре.

Свойства:

1. Возбудимость-способность тканей приходить в состояние возбуждения под действием раздражителей пороговой и сверхпороговой силы.

Гладкие мышцы менее возбудимы, чем скелетные: их пороги раздражения выше. Потенциалы действия большинства гладкомышечных волокон имеют малую амплитуду (порядка 60 мв вместо 120 мв в скелетных мышечных волокнах) и большую продолжительность - до 1-3 секунд.

2. Проводимость- способность мышечного волокна передавать возбуждение в виде нервного импульса или потенциала действия на протяжении всего мышечного волокна..

3. Рефрактерность-свойство ткани резко менять свою возбудимость при импульсном возбуждении вплоть до 0.

Рефрактерный период мышечной ткани более продолжителен, чем рефрактерный период нервной ткани.

4. Лабильность-максимальное число полных возбуждений,которое ткань может воспроизвести в единицу времени в точности с ритмом наносимых раздражений. Лабильность меньше,чем у нервной ткани (200-250 имп/с)

5. Сократимость-способность мыш.волокна изменять свою длину или свой тонус. Сокращение гладкой мускулатуры происходит более медленно и длительно. Сокращение развивается за счет кальция, входящего в клетку во время ПД.

Гладкие мышцы имеют и свои особенности:

1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии

постоянного частичного сокращения – тонуса;

2) самопроизвольную автоматическую активность;

3) сокращение в ответ на растяжение;

4) пластичность (уменьшение растяжения при увеличении растяжения);

5) высокую чувствительность к химическим веществам.

Сосудодвигательный центр, его составные части, их локализация и значение. Регуляция активности бульбарного сосудодвигательного центра. Особенности рефлекторной регуляции дыхания у лиц пожилого возраста.

Сосудодвигательный центр (СДЦ) в продолговатом мозге, на дне IV желудочка (В.Ф. Овсянников, 1871 г., открыт методом перерезки ствола мозга на различных уровнях), представлен двумя отделами (прессорный и депрессорный). Сосудодвигательный центр В. Ф. Овсянниковым в 1871 г. было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла - сосудодвигательный центр - находится в продолговатом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то артериальное давление не изменяется. Если перерезать мозг между продолговатым и спинным, максимальное давление крови в сонной артерии понижается до 60-70 мм рт. ст. Отсюда следует, что сосудодвигательный центр локализован в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение артериального давления. Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов - прессорного и депрессорного. Раздражение первого вызывает сужение артерий и подъем артериального давления, а раздражение второго - расширение артерий и падение давления.

В настоящее время считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов. Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, где образуются сосудосуживающие центры, регулирующие тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол. Кроме сосудодвигательного центра продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №4

1. Физиологические механизмы познания окружающей действительности. Сенсорные системы (анализаторы), их определение, классификация и строение. Значение отдельных звеньев сенсорных систем. Особенности мозгового (коркового) отдела анализатора (И.П. Павлов).

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №5

Функциональное значение различных областей коры большого мозга (Бродман). Представления И.П. Павлова о локализации функций в коре больших полушарий. Понятие о первичных, вторичных и третичных зонах коры большого мозга.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №6

Центральные

Эффекторные

Центральные механизмы выполняются, главным образом, центром терморегуляции, локализующимся в медиальной преоптической области переднего гипоталамуса и заднем гипаталамусе, где имеются:

а) термочувствительные нейроны , "задающие" уровень поддерживаемой температуры тела;

б) эффекторные нейроны , управляющие процессами теплопродукции и теплоотдачи./центр теплопродукции и центр теплоотдачи/.

На основе анализа и интеграции непрерывно определяется среднее значение температуры тела и приводится в соответствие фактическая и заданная температура.

Эффекторные механизмы регуляции теплообмена через изменение интенсивности кровотока в сосудах поверхности тела изменяют величину теплоотдачи организма.

Если уровень средней температуры тела , несмотря на расширение поверхностных сосудов , 1)превышает величину установочной температуры, происходит резкое усиление потоотделения . В случаях, когда, несмотря

на резкое сужение поверхностных сосудов и минимальное потоотделение, уровень средней температуры становится 2)ниже величины "установочной" температуры, активизируются процессы теплопродукции.

Если, несмотря на активацию обмена веществ , величина теплопродукции становится меньше величины теплоотдачи , возникает гипотермия - понижение температуры тела.

Гипотермия возникает тогда, когда интенсивность теплопродукции превышает теплоотдачу/ способность организма отдавать тепло в окружающую среду/.

В случае продолжительной гипертермии может развиваться "тепловой удар" -

В более легких случаях наблюдается" тепловой обморок",

Как при гипертермии, так и при гипертермии имеют место нарушения основного условия поддержания постоянства температуры тела - баланса теплопродукции и теплоотдачи.

В процессе эволюции в живых организмах выработалась особая ответная реакция на попадание во внутреннюю среду чужеродных веществ - лихорадка.

Это - состояние организма, при котором центр терморегуляции стимулирует повышение температуры тела. Это достигается перестраиванием механизма "установки" температуры регуляции на более высокую. Включаются механизмы , 1)активирующие теплопродукцию (повышение терморегуляционного тонуса мышц, мышечная дрожь) и 2)снижающие интенсивность теплоотдачи (сужение сосудов поверхности тела, принятие позы, уменьшающей площадь соприкосновения поверхности тела с внешней средой).

Переход "установочной точки" происходит в результате действия на соответствующую группу нейронов преоптической области гипоталамуса эндогенных пирогенов - веществ. вызывающих подъем температуры тела (альфа- и бетта- интерклейкин-1, альфа-интерферон, интерклейкин-6).

Система терморегуляции использует для осуществления своих функций компоненты других регулирующих систем.

Такое сопряжение теплообмена и других гомеостатических функций прослеживается, __________прежде всего, на уровне гипоталамуса . Его термочувствительные нейроны изменяют свою биоэлектрическую активность под действием эндопирогенов, половых гормонов, некоторых нейромедиаторов.

Реакции сопряжения на эффекторном уровне. В качестве эффекторов в реакциях теплообмена используются сосуды поверхности тела, что обусловлено выполнением более важной гомеостатической потребности организма - поддержания системного кровотока.

А) Когда температура поверхности тела выравнивается с таковой окружающей среды, ведущее значение приобретает потоотделение и испарение пота и влаги с поверхности тела.

Б) Если при подъеме температуры тела, в силу потоотделения теряется жидкость, уменьшается объем циркулирующей крови, то включаются системы осмо- и волюморегуляции ОЦК, как более древнее и более важные для сохранения гомеостаза.

В) При действии как гипер-, так и гипотермии могут наблюдаться сдвиги кислотно-щелочного равновесия.

*При действии на организм высокой температуры активация потоотделения и дыхания ведет к усиленному выделению из организма углекислого газа, некоторых минеральных ионов и за счет гиперпноэ и интенсификации потоотделения развивается дыхательный алколоз , при дальнейшем нарастании гипертермии - метаболический ацидоз .

*При действии гипотермии развивающаяся гиповентиляция является общим эффекторным механизмом, обеспечивающим снижение теплопотерь, поддержание на более низком уровне рН крови соответственно сниженной температуре тела.

Излучение - способ отдачи тепла в окружающую среду поверхностью тела человек в виде электромагнитных волн инфракрасного диапазона. Количество рассеиваемого тепла прямопропорционально площади поверхности излучения и разности температур кожи и окружающей среды.

При понижении температуры окружающей среды излучение увеличивается, при повышении температуры - понижается.

Теплопроведение - способ отдачи тепла при соприкосновении тела человека с другими физическими телами. Количество отдаваемого при этом тепла прямопропорционально:

а) разнице средних температур контактирующих тел

б) площади контактирующих поверхностей

в) времени теплового контакта

г) теплопроводности контактирующего тела

Сухой воздух, жировая ткань характеризуется низкой теплопроводностью.

Конвекция - способ теплопередачи, осуществляемый путем переноса тепла движущимися частицами воздуха (или воды). Для конвенции требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. Количество отдаваемого конвекцией тепла увеличивается при увеличении скорости движения воздуха (ветер, вентиляция).

Излучение, теплопроведение и конвекция становятся неэффективными способами теплоотдачи при выравнивании средних температур поверхности тела и окружающей среды.

Испарение - способ рассеивания организмом тепла в окружающую среду за счет его затрат на испарение пота в окружающую среду за счет его затрат на испарение пота в окружающую среду за счет его затрат на испарение пота или влаги с поверхности кожи или влаги со слизистых дыхательных путей.

У человека постоянно идет потоотделение потовыми железами кожи (36 гр/час при 20 0С) увлажнение слизистых дыхательных путей. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде (костюм - "сауна") усиливает потоотделение (до 50 - 200 гр/час). Испарение (единственный из способов теплоотдачи) возможно при выравнивании температур кожи и окружающей среды при влажности воздуха менее 100 процентов.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №7

Обмен веществ и жизнь(Ф. Энгельс). Звенья обмена веществ и энергии и факторы, влияющие на них. Основной обмен и факторы, его определяющие. Методы изучения основного обмена. Прямая и непрямая калориметрия. Регуляция обмена веществ.

Обмен веществ и энергии связаны между собой. Обмен веществ сопровождается преобразованием энергии (химической, механической, электрической в тепловую ).

В отличие от машин мы не преобразуем тепловую энергию в др. виды (паровоз). Мы еѐ выделяем как конечный продукт метаболизма во внешнюю среду.

Количество тепла, выделяемое живым организмом, пропорционально интенсивности обмена веществ.

Из этого следует:

1. По количеству выделяемого организмом тепла можно оценить интенсивность обменных процессов.

2. Количество выделившейся энергии должно компенсироваться за счет поступления химической энергии с пищей (м. рассчитать должный рацион питания).

3. Энергетический обмен является составной частью процессов терморегуляции.

Факторы, определяющие интенсивность энергообмена:

1. Состояние окружающей среды - температура (+18-22оС),

Влажность (60-80%) ,

Скорость ветра (не более 5 м/с),

Газовый состав атмосферного воздуха (21% О2, 0,03% СО2, 79% N2).

Это показатели «зоны комфорта».Отклонение от "зоны комфорта" в любую сторону изменяет интенсивность обмена веществ, следовательно количество вырабатываемого тепла.

2. Физическая активность. Сокращение скелетных мышц является самым мощным источником тепла в организме.

3. Состояние нервной системы. Сон или бодрствование, сильные эмоции, регулируются через вегетативную нервную систему -

- симпатическая нервная система оказывает эрготропное действие (усиливает процессы распада с высвобождением энергии),

- парасимпатическая - трофотропное действие - (стимулирует сбережение,

накопление энергии).

4. Гуморальные факторы - БАВ и гормоны:

а). Трофотропное действие - ацетилхолин, гистамин, сератонин, инсулин, СТГ.

б). Эрготропное действие - адреналин, тироксин.

Клинико-физиологическая оценка энергетического обмена

Показатели энергообмена: 1. Основной обмен. 2. Рабочий обмен.

Основной обмен

Основной обмен - это минимальный обмен веществ, который характеризуется минимальным количеством энергии, которое необходимо для поддержания жизнедеятельности организма в состоянии физического и психического покоя.

Энергия ОО необходима для:

1. Обеспечение базального уровня обмена веществ в каждой клетке.

2. Поддержание деятельности жизненно-важных органов (ЦНС, сердце,

почки, печень, дыхательная мускулатура).

3. Поддержание постоянной температуры тела.

Для определения ОО необходимо есоблюдать следующие условия:

Физический и эмоциональный покой,

- "зона комфорта" (см. выше),

Натощак (не менее 12-16 часов после приема пищи, чтобы избежать

эффекта "специфически-динамического действия пищи", начинается через 1 час после приема пищи, достигает максимума через 3 часа, наиболее сильно повышается при белковом питании (на 30%)),

Бодрствование (во время сна ОО снижается на 8-10%).

Величина основного обмена зависит от:

Пола (у мужчин на 10% больше),

Роста (прямо пропорциональная зависимость), /правило поверхности тела/.

Возраста (до 20-25 лет увеличивается, максимальный прирост - в 14-17 лет, до 40 лет - "фаза плато", затем снижается),

веса (прямо пропорциональная зависимость), правило поверхности тела.

Методы определения энергетического обмена.

Прямая калориметрия.

(биокалориметров )

:

по интенсивности газообмена .

Интенсивность газообмена характеризуется дыхательным коэффициентом.

Дыхательный коэффициент (ДК) - соотношение между объемом

Для белков - 0,8,

Для жиров - 0,7.

Каждому ДК ).

КЭО2 -

Регуляция обмена веществ

Биоэлектрические явления в сердце, их происхождение и методы регистрации. Анализ электрокардиограммы. Понятие об электрической оси сердца и ее клиническое значение. Определение положения электрической оси сердца.

Методичка КРОВООБРАЩЕНИЕ стр.34

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №8

Прямая калориметрия.

Метод основан на улавливании и измерении тепловой энергии, теряемой организмом в окружающее пространство. Измеряется с помощью калориметрических камер (биокалориметров ) (по кол-ву Н2О, удельной теплопроводности и разнице температур).

2. Непрямая (косвенная) калориметрия :

Оценка энергозатрат - косвенно, по интенсивности газообмена .

В процессе расщепления - в-во + О2 = СО2 + Н2О + Q (энергия).

Т.е., зная количество поглощенного О2 и выделенного СО2, можно судить косвенно о количестве выделившейся энергии. Интенсивность газообмена характеризуется дыхательным коэффициентом.

Дыхательный коэффициент (ДК) - соотношение между объемом образовавшегося СО2 и поглощенного О2.

Для углеводов ДК=1(С6Н12О6 + 6О2=6СО2+6Н2О + Q),

Для белков - 0,8,

Для жиров - 0,7.

При смешанной пище - ДК - от 0,7 до 1,0, т.е. = 0,85.

Каждому ДК соответствует своѐ кол-во энергии, которое при этом выделяется (свой Калорический Эквивалент Кислорода. КЭО2 ).

КЭО2 - количество тепла, которое выделяется в соответствующих

условиях при потреблении организмом 1 л кислорода. Выражается в ккал. Находится по таблице, в зависимости от конкретного ДК.

Для получения показателей газообмена, необходимых для расчета основного обмена, используют следующие методы.

а) метод полного газового анализа - метод Дугласа-Холдейна.

По количеству и соотношению выделенного СО2 и поглощенного О2,

Менее точный, чем прямая калориметрия, но более точный, чем метод неполного газоанализа

б) метод неполного газового анализа - по оксиспирограмме.

Самый неточный, но самый распространенный,

Позволяет быстро и без больших затрат получить ориентир.результат.

Этапы расчетов энергозатрат по оксиспирограмме:

Количество поглощенного кислорода за 1 минуту.

Ему соответствует КЭО2 = 4,86 ккал.

Кол-во погл. О2 за 1 мин. x 1440 мин. в сутках = кол-во энергозатрат.

найденный показатель сравниваем с должным ОО, (опред. по таблице).

Регуляция обмена веществ

Высшие нервные центры регуляции энергетического обмена и обмена веществ находятся в гипоталамусе. Они влияют на эти процессы через вегетативную нервную систему и гипоталамо-гипофизарную систему. Симпатический отдел ВНС стимулирует процессы диссимиляции, парасимпатический ассимиляцию. В нем же находятся центры регуляции водно-солевого обмена. Но главная роль в регуляции этих базисных процессов принадлежит железам внутренней секреции. В частности инсулин и глюкагон регулируют углеводный и жировой обмены. Причем инсулин тормозит выход жира из депо. Глюкокортикоиды надпочечников стимулируют распад белков. Соматотропин наоборот усиливает синтез белка. Минералокортикоиды натрий-калиевый. Основная роль в регуляции энергетического обмена принадлежит тиреоидным гормонам. Они резко усиливают его. Они же главные регуляторы белкового обмена. Значительно повышает энергетический обмен и адреналин. Большое его количество выделяется при голодании.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №9

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №10

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №11

1. Локализация функций в коре больших полушарий (Бродман, И.П. Павлов). Современные представления о локализации функций в коре полушарий большого мозга. Парность в работе полушарий головного мозга и их функциональная асимметрия. Доминантность высших психических функций (речь).

Структурно-функциональная организация коры головного мозга

Кора головного мозга – это слой серого вещества, покрывающий большие полуша-

рия. В состав коры входят: а) нейроны ; б) клетки нейроглии . Нейроны коры головного

мозга имеют колончатую организацию (строение). В колонках осуществляется перера-

ботка информации от рецепторов одной модальности (одного значения). Связь между

нейронами осуществляется через аксодендритные и аксосоматические синапсы. На осно-

вании различий в строении коры головного мозга Бродман разделил ее на 52 поля.

2. Значение коры головного мозга:

1) осуществляет контакт организма с внешней средой за счет условных и безусловных

рефлексов;

2) регулирует работу внутренних органов;

3) регулирует процессы обмена веществ в организме;

4) обеспечивает поведение человека и животных в окружающей среде;

5) осуществляет психическую деятельность.

3. Методы изучения функций коры головного мозга

Для изучения функций коры головного мозга используются следующие методы:

1) экстирпация (удаление) различных зон коры головного мозга; 2) раздражение различ-

ных зон обнаженной коры; 3) метод условных рефлексов ; 4) отведение биопотенциалов ;

5) клинические наблюдения .

4. Функциональное значение различных областей коры головного мозга

По современным представлениям различают три типа корковых зон: 1) первичные

проекционные зоны; 2) вторичные проекционные зоны; 3) третичные (ассоциативные)

Локализация функций в коре головного мозга:

1. Лобная область (сомато-сенсорная кора) включает:

а) прецентральную зону – моторная и премоторная области (передняя центральная

извилина), в которой располагается мозговой конец двигательного анализатора;

б) постцентральную зону – задняя центральная извилина, является мозговым кон-

цом кожного анализатора.

2. Височная область – принимает участие в:

а)формировании целостного поведения животных и человека;

б) возникновении слуховых ощущений – мозговой конец слухового анализатора;

в) в функции речи (речедвигательный анализатор);

г) вестибулярных функциях (височно-теменная область) – мозговой конец вестибулярно-

го анализатора.

3. Затылочная область – мозговой конец зрительного анализатора.

4. Обонятельная область –грушевидная доля и гипокамповая извилина, являются моз-

говым концом обонятельного анализатора.

5. Вкусовая область - гиппокамп, в котором локализован мозговой конец вкусового ана-

лизатора.

6. Теменная область – отсутствуют мозговые концы анализаторов, относится к числу ас-

социативных зон. Расположена между задней центральной и сильвиевой бороздами. В

ней преобладают полисенсорные нейроны.

5. Совместная работа больших полушарий и их функциональная асимметрия

Совместная работа больших полушарий обеспечивается:

1) анатомическими особенностями строения (наличие комиссур и связей между двумя

полушариями через ствол мозга);

2) физиологическими особенностями.

Работа больших полушарий осуществляется по принципу: а) содружественных от-

ношений, б) реципрокных отношений.

Кроме парной целостной работы больших полушарий для их деятельности харак-

терна функциональная асимметрия . Особенно асимметрия проявляется в отношении двигательных функций и речи. У праворуких доминирующим является левое полушарие.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №12

1. Торможение в центральной нервной системе (И.М. Сеченов). Виды торможения (первичное, вторичное), их характеристика. Современные представления о механизмах центрального торможения.

Различают периферическое и центральное торможение. Периферическое торможение

было открыто братьями Вебер, центральное торможение – И.М. Сеченовым.

Виды центрального торможения : 1) первичное , 2) вторичное . Для возникновения

первичного торможения необходимо наличие специальных тормозных структур. Пер-

вичное торможение может быть: а) пресинаптическое, б) постсинаптическое. Пресинап-

тическое торможение развивается в аксо-аксональных синапсах, образованных тормоз-

ным нейроном на пресинаптических окончаниях обычного возбудимого нейрона. В осно-

ве пресинаптического торможения лежит развитие стойкой деполяризации пресинапти-

ческой мембраны. Постсинаптическое торможение развивается в аксо-соматических тор-

мозных синапсах, образованных тормозным нейроном на теле другой нервной клетки.

Выделяющийся тормозный медиатор вызывает гиперполяризацию постсинаптической

мембраны.

Вторичное торможение развивается при изменении физиологических свойств обыч-

ных возбудимых нейронов.

Рецептивные поля (рефлексогенные зоны) сердечно-сосудистой системы, их локализация и значение. Рефлекторные влияния с каротидных синусов и дуги аорты на деятельность сердца и тонус кровеносных сосудов. Рефлекс Бейнбриджа. Рефлекторные дуги указанных рефлексов.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №13

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №14

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №15

1. Отличие условных рефлексов от безусловных. Условия, необходимые для образования условных рефлексов. Механизм образования временной нервной связи (И.П. Павлов, Э.А. Асратян, П.К. Анохин). Роль подкорковых структур в формировании условных рефлексов.

И.П. Павлов высшей нервной деятельностью назвал деятельность больших полу-

шарий головного мозга и ядер ближайшей подкорки, обеспечивающую нормальные

взаимоотношения организма с окружающей средой. Высшая нервная деятельность осу-

ществляется совокупностью безусловных и условных рефлексов, высших психических

функций и обеспечивает индивидуальное приспособление организма к изменяющимся

условиям, то есть обеспечивает поведение во внешнем мире.

2. Принципы рефлекторной теории И.П. Павлова :

1) принцип структурности;

2) принцип детерминизма;

3) принцип анализа и синтеза.

3. Классификация рефлекторной деятельности организма

И.П. Павлов показал, что все рефлекторные реакции можно разделить на две

большие группы: безусловные и условные.

4. Основные отличия условных рефлексов от безусловных

Безусловные рефлексы – это врожденные, наследственно передающиеся реакции.

Они постоянны и являются видовыми, то есть свойственны всем представителям данного

вида. Безусловные рефлексы осуществляются всегда в ответ на адекватное раздражение

рецептивных полей. Рефлекторные дуги безусловных рефлексов проходят через низшие

отделы центральной нервной системы без участия коры больших полушарий.

Условные рефлексы – это индивидуальные приобретенные рефлекторные реакции,

которые вырабатываются на базе безусловных рефлексов. Условные рефлексы могут

Понятие функциональной системы, разработанное в физиологии П.К. Анохиным, было более широко и в новом контексте использовано в нейропсихологии в работах А.Р. Лурии и послужило одним из ключевых моментов при разработке теоретических основ нейропсихологии. Уточняя содержание понятия «функция», А.Р. Лурия пришел к выводу, что между физиологическими и высшими психическими функциями существует как сходство, так и различие. Любые физиологические функции, так же, как и высшие психические функции, нельзя представлять упрощенно как отправления той или иной ткани (или органа). Каждая функция - это сложная функциональная система, состоящая из многих звеньев и реализующаяся при участии многих сенсорных, моторных и иных нервных аппаратов. Подобным образом организованы функциональные системы, осуществляющие не только вегетативные и соматические процессы, но и те, которые управляют движениями, включая самые сложные - произвольные движения.

В соответствии с теорией системно-динамической локализации высших психических функций функциональная система рассматривается как морфофоизиологическая основа высших психических функций, как совокупность различных мозговых структур и протекающих в них физиологических процессов. Характеризуя основные черты физиологических функциональных систем, А.Р. Лурия отмечал, что они имеют сложное строение, включают в себя набор афферентных (настраивающих) и эфферентных (осуществляющих) компонентов (звеньев), обладающих большой подвижностью, гибкостью, вариативностью.

Сходной особенностью обладают и функциональные системы, обеспечивающие реализацию высших психических функций, или сложных сознательных форм психической деятельности. С физиологическими функциями их объединяет наличие множества афферентных и эфферентных звеньев, имеющих высокую изменчивость и подвижность. В то же время подчеркивается, что функциональные системы, с помощью которых осуществляются высшие психические функции, неизмеримо сложнее по организации.

С другой стороны, как утверждается в работе Анохина П.К. , в виде понятия «функциональной системы» была сделана попытка создания такого промежуточного понятия, которое позволило бы подойти к анализу приспособительного и целеустремленного поведения человека. Это позволяет перебросить мост между физиологией и психологией и возможно только в случае, если произвести некоторую промежуточную операцию, заключающуюся в таком синтезе всего физиологического материала, который помог бы видеть принципы, свойственные только целостной организации (, с. 52).

Функциональной системой, согласно П.К. Анохину, является всякая организация нервных процессов, в которой отдаленные и разнообразные импульсы нервной системы объединяются на основе одновременного и соподчиненного функционирования, заканчивающегося полезным приспособительным эффектом для организма. В такой функциональной системе конечный эффект в виде работы каких-либо органов не может быть строго отделен от собственно нервных процессов. Рабочий эффект является по существу для нервной системы новым комплексным стимулом со сложной градацией специфически отдельных импульсов. Следовательно, понятие функциональной системы обязательно включает в себя циклические взаимодействия между центром и периферией. По своему масштабу функциональные системы организма могут быть весьма различны. Одни из них охватывают огромные комплексы процессов нервного и гуморального характера, как, например, дыхательная система, другие сведены до незначительного движения одним-двумя пальцами по направлению к какому-либо предмету.

Организм животного есть совокупная деятельность многообразных и иногда принципиально различных функциональных систем. Их соотношение, точки соприкосновения и перекрытия друг с другом являются специальной большой проблемой, которая при достаточно глубоком ее рассмотрении может привести к формулировке таких законов, которые позволят на основе физиологии разъяснить формулу «организм - как целое». Функциональная система представляет собой систему активно объединенных процессов, которые, раз объединившись, стремятся сохранить созданную архитектуру соотношений. Понятие функциональной системы не может быть заменено понятиями «рабочее содружество центров», «констелляция центров» и т.д. Эти последние понятия, отражая собой лишь простое взаимодействие нервных образований, не характеризуют наиболее важного и решающего свойства функциональной системы: активно изменять соотношение и устанавливать определенным образом направленное соподчинение между ее компонентами. Функциональная система приобретает новые, не свойственные ее частям качества и формы поведения, которые присущи ей только как целостному образованию. Важным преимуществом данной концепции является также и то, что она аргументирована целиком на физиологическом основании.

Функциональная система может быть по преимуществу врожденной, т.е. определенной морфогенетически, или, наоборот, по преимуществу созданной заново, т.е. эпизодической, приспосабливающей организм для данного момента. Однако и в том, и в другом случае, поскольку она сложилась как система, она неизбежно приобретает новые свойства, не присущие частным процессам, являющимся традиционным объектом исследования классической физиологии.

В то же время, функциональная система - единица интеграции целого организма, складывающаяся динамически для достижения любой его приспособительной деятельности и всегда на основе циклических взаимоотношений избирательно объединяющая специальные центрально-периферические образования. Понятие функциональной системы возникло на основе систематических исследований нарушенных функций: наложение гетерогенных нервных анастомозов и наблюдений за ходом восстановления функций, пересадка мышц с целью придания им нового функционального значения и их деафферентация. Физиологическая суть компенсаторных приспособлений состоит в том, что каждая попытка животного или человека исправить имеющийся дефект должна быть оценена немедленно по ее результату. Это значит, что любой следующий этап компенсации может наступить только тогда, когда произошла оценка предыдущего этапа. Таким образом, на каждом отдельном этапе компенсаторного процесса имеется оценка полученного результата, степени его полезности для организма. Только эта цепь «положительных результатов» компенсации обеспечивает полное восстановление утраченной функции.

Такая система осуществляет качественный приспособительный эффект. Все части этой системы вступают в динамическое, экстренно складывающееся функциональное объединение на основе непрерывной обратной информации о приспособительном результате. П.К. Анохин отмечает этот принцип как центральный для объяснения всех приспособительных актов, которые приобретают черты целостных и заканчиваются полезным приспособительным эффектом. При этом каждая функциональная система представляет собой до некоторой степени замкнутую систему благодаря постоянной связи с периферическим органами и особенно благодаря постоянной афферентации от этих органов. Таким образом, каждая функциональная система имеет определенный комплекс афферентных сигнализаций, который через акцептор действия направляет реализацию ее функции. Отдельные афферентные импульсы в функциональной системе могут исходить от самых разнообразных и часто удаленных друг от друга органов. Напрмер, при дыхательном акте такие афферентные импульсы идут от диафрагмы, легких, трахеи; однако, несмотря на их различное происхождение, эти импульсы объединяются в центральную нервную систему благодаря тончайшим временным отношениям между ними. Каждой функциональной системе присуща определенная как в качественном, так и в количественном отношении афферентация, причем в зависимости от степени автоматизации и филогенетической древности такой системы требуемое количество и качество афферентных импульсов различно.

Роль афферентных функций находится в полной зависимости от свойств и от конечного эффекта данной функциональной системы. Иначе говоря, функциональная система как целое, подчиненное получению определенного приспособительного результата, имеет возможность динамически перераспределять участие афферентных импульсов, сохраняя какой-то постоянный их уровень.

Loading...Loading...