Землетрясения. Общие сведения о землетрясениях Размещение сейсмически активных зон

Теоретический тур

Задание 1.

Пожарная безопасность. Дайте определение.

Задание 2.

Назовите причины пожаров в быту.

Задание 3.

Что включает в себя культура безопасного поведения на дороге

Задание 4.

Что представляют собой дорожные знаки

Задание 5.

Дайте определение стихийному бедствию.

Задание 6.

Приведите основные источники загрязнения атмосферы

Задание 7.

Дайте определение аварии

Задание 8.

Какие объекты относятся к радиационно опасным объектам?

Задание 9

1. Какой сигнал ГО означает завывание сирены, прерывистые гудки предприятий и транспортных средств?

1. Радиационная опасность

2. Внимание всем

3. Воздушная тревога

2. Массовые болезни растений называют

1.Эпидемией

2.Эпизоотией

3.Эпифитотией

3. Геологические природные явления это-

1. Природные явления, образующиеся в биосфере (оползень, землетрясение, обвал)

2. Природные явления, образующиеся в гидросфере (извержение вулкана, цунами, туман)

3. Природные явления, образующиеся в литосфере (землетрясения, обвалы, оползни)

4. Место разрушения горной породы называют

1.Гипоцентром

2.Магнитудой

3.Эпицентром

5. Толчок, предшествующий главному сейсмическому толчку землетрясения.

2.Афтершок

3.Моношок

6. К коллективным средствам защиты относятся:

1. Убежища и противорадиационные укрытия;

2 . Противогазы и респираторы;

3. Средства защиты кожи и респираторы на всех ра­ботников предприятия.

7. Вулканы, не проявляющие вулканической активности, называют:

1.Действующими

2.Дремлющими

3.Потухшими

8. Угроза безопасности это-

1. Крайне необычная по сложной опасная ситуация, на грани несчастного случая.

2. Совокупность факторов, создающих опасность жизненно важным интересам личности, общества, государства.

3. Чрезвычайные ситуации техногенного, природного и социального характера

9. Какие виды возгорания запрещено тушить пенным огнетушителем?

1. Электропровод, электроустановки

2. деревянные строения

3. Мусор, бумагу

10. Область пониженного давления в атмосфере – это:

2. Циклон

3. Антициклон

11. Цель йодной профилактики - не допустить:

1. Возникновения лучевой болезни;

2. Внутреннего облучения;

3. Поражения щитовидной железы

12. При аварии с утечкой аммиака в качестве индивидуального средства защиты вы решили применить ватно-марлевую повязку. Каким раствором следует её смочить? Назовите правильный ответ:

1. 2%-м раствором нашатырного спирта;

2. 2%-м раствором уксусной или лимонной кислоты;

3. 2%-м раствором соды.

13. Кратковременное усиление ветра до скорости 20-30 м/с называют

1.Ураганом

3.Шквалом

14. При аварии на химически опасном объекте произошла утечка хлора. Вы можете оказаться в зоне заражения, живете на четвертом этаже девятиэтажного дома. Как вы поступите?

1. Укроетесь в подвале здания

2. Подниметесь на верхний этаж

3. Покинете свою квартиру и спуститесь на первый этаж

15. РСЧС создана с целью:

1.Прогнозирования ЧС на территории Российской Федерации и организации проведения аварийно-спа­сательных и других неотложных работ;

2.Объединения усилий органов власти, органи­заций и предприятий, их сил и средств в области предупреждения и ликвидации чрезвычайных ситу­аций;

3.Обеспечения первоочередного жизнеобеспечения населения, пострадавшего в чрезвычайных ситуациях на территории Российской Федерации.

16. Морены это - …

1. Ледниковые отложения

2. Застывшая лава

3. Карстовые провалы

17. Какие побережья России, больше всего подвержены воздействиям цунами?

1. Черноморское побережье Северного Кавказа

2. Побережье Камчатки, Сахалина и Курильских островов

3. Побережье Северного ледовитого океана

18. Основным источником энергии, для человека, являются:

1. Витамины

2. Углеводы

19. Инфекционные заболевания среди людей, выходящие за границы одного государства называют:

1.Эпидемической вспышкой

2.Эпидемией

3.Пандемией

20. Инфекционная болезнь, характеризующаяся поражением толстой кишки явлениями интоксикации, называется:

1.Гепатит

2.Дизентерия

Землетрясения достигают иногда неистовой силы, и до сих пор не удается предсказать, когда и где они возникнут. Они так часто заставляли человека чувствовать себя беспомощным, что он стал постоянно бояться землетрясений. Во многих странах народная легенда связывает их с буйством гигантских чудищ, держащих на себе Землю.

Первые систематические и свободные от мистики представления о землетрясениях возникли в Греции. Жители ее часто были свидетелями извержения вулканов в Эгейском море и страдали от землетрясений, происходивших на берегах Средиземного моря и иногда сопровождавшихся «приливными» волнами (цунами). Многие древнегреческие философы предлагали для этих природных явлений физические объяснения. Например, Страбон заметил, что землетрясения чаще происходят на побережье, чем вдали от моря. Он, как и Аристотель, считал, что землетрясения вызываются сильнейшими подземными ветрами, воспламеняющими горючие вещества.

В начале нашего века во многих местах земного шара были созданы сейсмические станции. На них постоянно работают чувствительные сейсмографы, которые регистрируют слабые сейсмические волны, возникающие при удаленных землетрясениях. Например, Сан-Францисское землетрясение 1906 г. было отчетливо записано десятками станций в целом ряде стран за пределами США, в том числе в Японии, Италии и Германии.

Значение этой развернутой по всему миру сети сейсмографов состояло в том, что документация землетрясений уже больше не ограничивалась рассказами о субъективных ощущениях и визуально наблюдавшихся эффектах. Была разработана программа международного сотрудничества, которая предусматривала обмен записями землетрясений, что помогало бы точно определять местоположение очагов. Впервые возникла статистика времени возникновения землетрясений и их географического распределения.

Слово «цунами» произошло из японского языка и означает «гигантская волна в гавани». Возникают цунами на поверхности океана в результате извержения подводных вулканов или землетрясений. Водные массы начинают раскачиваться и постепенно приходят в медленное, но несущее в себе огромную энергию движение, которое из центра распространяется во все стороны. Длина волны, т.е. расстояние от одной водяной горы до другой, составляет от 150 до 600 км. До тех пор пока сейсмические волны имеют под собой большую глубину, их высота не превышает одного метра и они вполне безобидны. Чудовищная сила цунами обнаруживается лишь у берегов. Там волны замедляют свое движение, вода вздымается на невероятную высоту; чем круче берег, тем выше волны. Как при сильном отливе, вода сначала откатывается от берега, обнажая дно на целые километры. Затем приливает вновь уже за считанные минуты. Высота волн может достигать 60 метров, и несутся они на берег со скоростью 90 км/ч, все сметая на своем пути.

В дальнейшем возможность определять с одинаковой точностью местоположение землетрясений умеренной силы в любом районе земной поверхности сильно возросла в результате создания - по инициативе США - измерительного комплекса, названного Мировой сетью стандартизированных сейсмических станций (WWWSSN - World Standardized Seismograph Network).

Интенсивность землетрясения - на поверхности земли измеряется в баллах. В нашей стране принята международная М8К-64 (шкала Медведева, Шпонхойтера, Карника), в соответствии с которой землетрясения подразделяются по силе толчков на поверхности земли на 12 баллов. Условно их можно разделить на слабые (1-4 балла), сильные (5-8 баллов) и сильнейшие, или разрушительные (8 баллов и выше).

При 3-балльном землетрясении колебания отмечаются немногими людьми и только в помещении; при 5-ти балльном -- качаются висячие предметы и все, находящиеся в помещении отмечают толчки; при 6-балльном - появляются повреждения в зданиях; при 8-балльном - возникают трещины в стенах зданий, обваливаются карнизы и трубы; 10-балльное землетрясение сопровождается всеобщим уничтожением зданий и нарушением поверхности земли. В зависимости от силы подземных толчков могут разрушаться целые поселки и города.

1.2 Глубина очагов землетрясения

Землетрясение - это просто колебание грунта. Волны, которые вызывают землетрясение, называются сейсмическими волнами; подобно звуковым волнам, расходящимся от гонга при ударе по нему, сейсмические волны также излучаются из некоторого источника энергии, находящегося где-то в верхних слоях Земли. Хотя источник естественных землетрясений занимает некоторый объем горных пород, часто его удобно определять как точку, из которой расходятся сейсмические волны. Эту точку называют фокусом землетрясения. При естественных землетрясениях она, конечно, находится на некоторой глубине под земной поверхностью. При искусственных землетрясениях, таких как подземные ядерные взрывы, фокус расположен близко к поверхности. Точку на земной поверхности, расположенную непосредственно над фокусом землетрясения, называют эпицентром землетрясения.

Насколько глубоко в теле Земли находятся гипоцентры землетрясений? Одним из первых поразительных открытий, сделанных сейсмологами, было то, что, хотя фокусы многих землетрясений расположены на небольшой глубине, в некоторых районах их глубина составляет сотни километров. К таким районам относятся южноамериканские Анды, острова Тонга, Самоа, Новые Гебриды, Японское море, Индонезия, Антильские острова в Карибском море; во всех этих районах имеются глубоководные океанические желоба. В среднем частота землетрясений здесь резко убывает на глубинах более 200 км, но некоторые фокусы достигают даже глубин 700 км. Землетрясение, возникающие на глубинах от 70 до 300 км, весьма произвольно относят к категории промежуточных, а те, которые возникают на еще большей глубине, называют глубокофокусными. Промежуточные и глубокофокусные землетрясения происходят также и далеко от Тихоокеанского района: в Гиндукуше, Румынии, Эгейском море и под территорией Испании.

Мелкофокусные толчки - это те, очаги которых расположены непосредственно под земной поверхностью. Именно мелкофокусные землетрясения вызывают самые большие разрушения, и в общей сумме энергии, выделяющейся во всем мире во время землетрясений, вклад их составляет 3/4. В Калифорнии, например, все известные до сих пор землетрясения были мелкофокусными.

В большинстве случаев после умеренных или сильных мелкофокусных землетрясений в той же местности в течение нескольких часов, а то и нескольких месяцев отмечаются многочисленные землетрясения меньшей силы. Они называются афтершоками, и их число при действительно крупном землетрясении бывает иногда чрезвычайно большим.

Некоторым землетрясениям предшествуют предварительные толчки из той же очаговой области - форшоки; предполагается, что их можно использовать для предсказания главного толчка.

1.3 Типы землетрясений

Еще не так давно было широко распространено мнение, что причины землетрясений будут скрыты во мраке неизвестности, поскольку они возникают на глубинах, слишком далеких от сферы человеческих наблюдений.

Сегодня мы можем объяснить природу землетрясений и большую часть их видимых свойств с позиции физической теории. Согласно современным взглядам, землетрясения отражают процесс постоянного геологического преобразования нашей планеты. Рассмотрим теперь принятую в наше время теорию происхождения землетрясений и то, как она помогает нам глубже понять их природу и даже предсказывать их.

Первый шаг к восприятию новых взглядов заключается в признании тесной связи в расположении тех районов земного шара, которые наиболее подвержены землетрясениям, и геологически новых и активных областей Земли. Большинство землетрясений возникает на окраинах плит: поэтому мы делаем вывод, что те же глобальные геологические, или тектонические, силы, которые создают горы, рифтовые долины, срединно-океанические хребты и глубоководные желоба, те же самые силы представляют собой и первичную причину сильнейших землетрясений. Природа этих глобальных сил в настоящее время еще не совсем ясна, но несомненно, что их появление обусловлено температурными неоднородностями в теле Земли -неоднородностями, возникающими благодаря потере тепла путем излучения в окружающее пространство, с одной стороны, и благодаря добавлению тепла от распада радиоактивных элементов, содержащихся в горных породах, - с другой.

Полезно ввести квалификацию землетрясений по способу их образования. Больше всех распространены тектонические землетрясения. Они возникают, когда в горных породах под действием тех или иных геологических сил происходит разрыв. Тектонические землетрясения имеют важное научное значение для познания недр Земли и громадное практическое значение для человеческого общества, поскольку они представляют собой самое опасное природное явление.

Однако землетрясения возникают и от других причин. Подземные толчки другого типа сопровождают вулканические извержения. И в наше время многие люди все еще считают, что землетрясения связаны главным образом с вулканической деятельностью. Эта идея восходит к древнегреческим философам, которые обратили внимание на широкое распространение землетрясений и вулканов во многих районах Средиземноморья. Сегодня мы также выделяем вулканические землетрясения - те, которые происходят в сочетании с вулканической деятельностью, но считаем что как извержения вулканов, так и землетрясения являются результатом действия тектонических сил на горные породы, и они не обязательно возникают вместе.

Третью категорию образуют обвальные землетрясения. Это небольшие землетрясения, возникающие в районах, где есть подземные пустоты и горные выработки. Непосредственная причина колебаний грунта заключается при этом в обрушении кровли шахты или пещеры. Часто наблюдаемая разновидность этого явления - так называемые «горные удары». Они случаются, когда напряжения, возникающие вокруг горной выработки, заставляют большие массы горных пород резко, со взрывом, отделяться от ее забоя, возбуждающая сейсмические волны. Горные удары наблюдались, например, в Канаде; особенно часто они отмечаются в Южной Африке.

Большой интерес вызывает разновидность обвальных землетрясений, возникающих иногда при развитии крупных оползней. Например, в результате гигантского оползня, образовавшегося 25 апреля 1974 г. на реке Мантаро в Перу, возникли сейсмические волны, эквивалентные землетрясению умеренной силы.

Последний тип землетрясений - это искусственные, производимые человеком взрывные землетрясения, возникающие при обычных или ядерных взрывах. Подземные ядерные взрывы, производившиеся в течение последних десятилетий на ряде испытательных полигонов в разных местах земного шара, вызвали довольно значительные землетрясения. Когда в скважине глубоко под землей взрывается ядерное устройство, высвобождается огромное количество ядерной энергии. За миллионные доли секунды давление там подскакивает до величин, в тысячи раз превышающих атмосферное давление, а температура увеличивается в этом месте на миллионы градусов. Окружающие породы испаряются, образуя сферическую полость диаметром во много метров. Полость разрастается, пока кипящая порода испаряется с ее поверхности, а породы вокруг полости под действием ударной волны пронизываются мельчайшими трещинами.

За пределами этой трещиноватой зоны, размеры которой измеряются иногда сотнями метров, сжатие в горных породах приводят к возникновению сейсмических волн, распространяющихся во всех направлениях. Когда первая сейсмическая волна сжатия достигает поверхности, грунт выгибается вверх и, если энергия волны достаточно велика, может произойти выброс поверхностных и коренных пород в воздух образованием воронки. Если скважина глубокая, то поверхность только слегка растрескается и порода на мгновение поднимется, чтобы затем снова рухнуть на подстилающие слои.

Некоторые подземные ядерные взрывы были настолько сильны, что распространившиеся от них сейсмические волны прошли через внутренние области Земли и были записаны на дальних сейсмических станциях с амплитудой, эквивалентной волнам землетрясений с магнитурой 7 по шкале Рихтера. В некоторых случаях эти волны поколебали здания в отдаленных городах.

1.4 Признаки готовящегося землетрясения

Прежде всего, особый интерес сейсмологов привлекают предвестниковые изменения скорости продольных сейсмических, волн, поскольку сейсмологические станции специально сконструированы так, чтобы точно отмечать время прихода волн.

Второй из параметров, которые могут быть использованы для прогноза, - это изменение уровня земной поверхности, например наклон поверхности грунта в сейсмических районах.

Третий параметр - выделение инертного газа радона в атмосферу вдоль зон активных разломов, особенно из глубоких скважин.

Четвертый параметр, привлекающий большое внимание, электропроводимость пород в зоне подготовки землетрясения. Из лабораторных экспериментов, проведенных на образцах горных пород, известно, что электрическое сопротивление водонасыщенной породы, например, гранита, резко меняется перед тем, как порода начинает разрушаться под действием высокого давления.

Пятый параметр - вариации уровня сейсмической активности. По этому параметру имеется больше сведений, чем по четырем другим, но полученные до сих пор результаты не позволяют сделать определенных выводов. Регистрируются сильные изменения нормального фона сейсмической активности - обычно это увеличение частоты слабых землетрясений.

Рассмотрим эти пять стадий. Первая стадия состоит в медленном накоплении упругой деформации благодаря действию главных тектонических сил. В течение этого периода все сейсмические параметры характеризуются нормальными значениями. На второй стадии в коровых породах зон разлома развиваются трещины что приводит к общему возрастанию объема - к дилатансии. Когда открываются трещины, скорость продольных волн, проходящих через такую раздувающуюся область, падает, дневная поверхность при этом воздымается, выделяется газ радон, уменьшается электрическое сопротивление может измениться частота микроземлетрясений, отмечаемых на данной площади. На третьей стадии происходит диффузия воды из окружающих пород в поры и микротрещины, что создаете условия неустойчивости. По мере заполнения трещин водой скорость проходящих через данный район Р-волн начинает снова возрастать, поднятие поверхности грунта прекращается, выделение радона из свежих трещин затухает, а электрическое сопротивление продолжает уменьшаться. Четвертая стадия соответствует моменту самого землетрясения, после чего сразу наступает пятая стадия, когда на площади возникают многочисленные афтершоки.

Некоторым сильным землетрясениям предшествуют более слабые толчки, так называемые форштоки. Установлена последовательность событий, предшествовавших нескольким сильным землетрясениям в Новой Зеландии и Калифорнии. Во-первых, это тесно сгруппированная серия толчков примерно равной магнитуды, которая называется «предваряющим роем». За ним следует период, названный «предваряющим перерывом», в тече

ние которого нигде в окрестностях сейсмических толчков не наблюдается. Затем следует «главное землетрясение», сила которого зависит от величины роя землетрясений и продолжительности перерыва. Предполагается, что рой вызывается раскрытием трещин. Возможность прогнозирования землетрясений на основе этих представлений очевидна, однако имеются определенные трудности в выделении предваряющих роев из других сходных по характеру групповых землетрясений, и каких – либо бесспорных успехов в этой области не достигнуто. Положение и число землетрясений различной магнитуды может служить важным индикатором приближающегося сильного землетрясения. В Японии исследования этого явления признаны заслуживающими доверия, но надежным на 100% этот метод не станет никогда, ибо многие катастрофические землетрясения происходили без каких-либо предварительных толчков.

Известно, что очаги землетрясений не остаются на одном и том же месте, а перемещаются в пределах сейсмической зоны. Зная направления этого перемещения и его скорость, можно было бы предположить будущее землетрясение. К сожалению, такого рода перемещение очагов не происходит равномерно. В Японии скорость миграции очагов определена величиной 100 км в год. В районе Мацуширо в Японии регистрировалось множество слабых толчков – до 8000 в день. Через несколько лет оказалось, что очаги приближаются к поверхности и смещаются в южном направлении. Было вычислено вероятное местоположение очага следующего землетрясения и непосредственно к нему была пробурена скважина. Толчки прекратились.

Наблюдение за необычным поведением животных перед землетрясением признано очень важным, хотя отдельные специалисты утверждают, что речь идет о случайности. В ответе на вопрос, что же, воспринимают животные ученые не пришли к согласию. Представляются разные возможности: может быть с помощью органов слуха животные слышат подземные шумы или улавливают ультразвуковые сигналы перед толчками, либо организм животных реагирует на незначительные изменения барометрического давления или на слабые изменения магнитного поля. Возможно животные воспринимают слабые продольные волны, в то время как человек ощущает только поперечные.

Уровень грунтовых вод перед землетрясениями часто повышается или понижается, по-видимому, из-за напряженного состояния горных пород. Землетрясения могут влиять на уровень воды. Вода в скважинах может колебаться при прохождении сейсмических волн, даже если скважина находится далеко от эпицентра. Уровень воды в скважинах, находящихся вблизи эпицентра, часто испытывает стабильные изменения: в одних скважинах он становится выше, в других – ниже.

5. Трудности прогноза

Проблема предсказания землетрясения в настоящее время привлекает и ученых, и общественность как одна из серьезнейших и вместе с тем весьма актуальных. Мнения исследователей о возможности и путях решения проблемы далеко не однозначны.

Принципиальная основа решения проблемы прогноза землетрясений состоит в установленном лишь в последние30 лет фундаментальном факте, что перед землетрясением меняются физические (механические и электрические в первую очередь) свойства горных пород. Возникают аномалии разного рода геофизических полей: сейсмического, поля скоростей упругих волн, электрического, магнитного, аномалии в наклонах и деформациях поверхности, гидрогеологическом и газохимическом режиме и т.д. В сущности, на этом и основано проявление большинства предвестников. Всего сейчас известно свыше 300 предвестников, из них 10-15 неплохо изучены.

Прогноз землетрясения можно считать полным и практически значимым, если заблаговременно предсказываются три элемента будущего события: место, интенсивность (магнитуда) и время толчка. Карта сейсмического районирования, даже самая надежная, в лучшем случае дает сведения о возможной максимальной интенсивности землетрясений и средней частоте их повторения в какой-то зоне. Она содержит необходимые элементы прогноза, но самого прогноза обеспечить не в состоянии, так как не говорит о конкретных ожидаемых событиях. В ней отсутствует главнейший элемент прогноза – предсказания времени события.

Трудности в отношении прогноза времени землетрясения огромны. Да и предвидение места и интенсивности будущих подземных бурь – тоже еще далеко не решенная задача. До сих пор не разработаны принципиальные возможности и конкретные способы предвидения землетрясений в любой части сейсмически опасного региона с заданной точностью места и интенсивности в заданный отрезок времени. Поэтому долгое время идеальной будет, по-видимому, такая схема: в пределах сейсмогенного региона выделяется некая достаточно обширная область, где в течение нескольких лет или десятилетий можно ожидать крупное сейсмическое событие. Предшествующими исследованиями область ожидаемого события снижается, уточняются возможная сила толчка или его энергетическая характеристика – магнитуда и опасный период времени На следующей стадии разработок определяется место предстоящего толчка, а время ожидания события сокращается до нескольких дней и часов. В сущности, схема предусматривает три последовательные стадии прогноза – долгосрочный, среднесрочный и краткосрочный.

Заключение

Однако проблема «что делать с прогнозом» остается. Некоторые сейсмологи сочли бы свой долг выполненным, предав свое предупреждение по телеграфу премьер – министру, другие пытаются подключить социологов к исследованию вопроса о том, какова будет наиболее вероятная реакция общества на сделанное предупреждение. Простой гражданин едва ли будет обрадован сообщению, что городской совет предлагает ему посмотреть кинокартину на открытом воздухе в городском сквере, если он будет знать, что его дом по всей вероятности будет разрушен через один или два часа.

Нет сомнений, что социальные и экономические проблемы, которые возникнут в результате предупреждения, будут весьма серьезными, но что произойдет в действительности в большей степени, зависит от содержания предупреждения. В настоящее время представляется вероятным, что сейсмологи вначале будут делать заблаговременные предупреждения, возможно, на несколько лет вперед, а затем постепенно уточнять время, место и возможную магнитуду ожидаемого землетрясения по мере его приближения. Ведь стоит сделать предупреждение, и страховые премии, как и цены на недвижимость резко изменятся, может начаться миграция населения, новые строительные объекты будут заморожены, начнется безработица среди рабочих, занятых ремонтом окраской зданий. С другой стороны может возникнуть повышенный спрос на лагерное оборудование, средства борьбы с огнем, товары первой необходимости, за чем последуют их нехватка и повышение цен.

1.2. Землетрясение

Являются наиболее опасным проявлением гео­логических процессов. Это внезапное освобождение потенциаль­ной энергии земных недр в виде продольных и поперечных волн. За исторический период, т.е. за последние 4 тыс. лет, от землетря­сений, по неполным данным, погибли около 13 млн человек. Только во время одного землетрясения в Китае в 1976 г., по разным дан­ным, погибли от 240 тыс. до 650 тыс. человек и более 700 тыс. чело­век получили ранения .

По генезису природные землетрясения подразделяются на тек­тонические, вулканические и экзогенные. Самыми разрушитель­ными являются тектонические, вызываемые быстрым смещением крыльев тектонических нарушений.

Сила землетрясения зависит от количества выделившейся в об­ласти очага энергии, характеризуемой магнитудой (условной энер­гетической характеристикой) и глубиной залегания очага. Интен­сивность - качественный показатель последствий, включающий размер ущерба, количество жертв и степень восприятия людьми последствий землетрясения.

Для определения интенсивности колебания поверхности в эпи­центре используется 12-балльная шкала силы землетрясений, ос­нованная на степени разрушения построек. Более широко приме­няют шкалу магнитуд, которая неверно называется баллами. Она была предложена Ч. Рихтером и соответствует относительному коли­честву энергии, выделившейся в очаге землетрясения. Наиболее сильные землетрясения характеризуются магнитудой (М) от 6 до 8,9. Магнитуда 6 соответствует землетрясению силой 8 баллов, М = 7 -9-10-балльному землетрясению, а М > 8-11 -12-бал­льным землетрясениям .

Надо отметить, что оценка землетрясений в магнитудах более объективна, чем в баллах, так как степень разрушения построек зависит не только от количества выделившейся энергии, но и от других факторов, в частности от качества построек и применения антисейсмической технологии строительства, глубины очага, водонасышенности горных пород и т.д.

Землетрясения выражаются многими толчками, направленны­ми вверх от очага, из которых только один или несколько являются главными и наиболее разрушительными. Главному толчку пред­шествуют форшоки, а после следуют повторные толчки - афтершоки.

До 80 % землетрясений происходят в земной коре, и у многих из них очаги располагаются на глубине 8 - 20 км. Максимальная глубина очага землетрясения находится примерно на границе ниж­ней и верхней мантии (620-720 км).

Большая часть крупных землетрясений приурочена к Альпийско-Гималайской области и Тихоокеанскому огненному кольцу (рис. 8.5). В состав первой входят горно-складчатые сооружения Се­верной Африки, Апеннины, Альпы, Карпаты, Крым, Кавказ, гор­ные сооружения Балканского полуострова. Малой и Средней Азии, Ирана, Афганистана, Памира, Гималаев и Бирмы. Тихоокеанское огненное кольцо включает Алеутские острова, Камчатку, Саха­лин. Курильскую гряду. Японские острова, горные сооружения Юго-Восточной Азии. Центральной Америки. Анды и Кордилье­ры. В перечисленных районах происходят самые сильные землетря­сения, как правило, превышающие 9-10 баллов. В сейсмоопасных областях проживает более половины населения Японии, одна треть населения Китая, одна седьмая часть населения США и одна со­тая часть населения России.

Землетрясения - это комплексное бедствие с прямым и кос­венным вторичным ущербом, возникающим в результате схода лавин и оползней, селей, возникновения цунами и пожаров. При­чем в материальном исчислении ущерб из-за сопутствующих сти­хийных бедствий нередко превышает первичный ущерб.

Величина ущерба, наносимого землетрясениями, зависит от силы сейсмических волн, достигающих земной поверхности, час­тоты, продолжительности сейсмических колебаний, от конструк­тивных особенностей зданий и состояния грунта основания. Об­щий ущерб от разрушения зданий во время землетрясения в Кара­касе в 1967 г. превысил 100 млн долларов и при этом погибли 205 человек. Во время Ашхабадского землетрясения в 1948 г. город был практически полностью разрушен, а число жертв возможно превысило 125 тыс. человек. Одним из самых тяжелых по своим соци­ально-экономическим последствиям было Спитакское землетря­сение 7 декабря 1988 г. Число погибших превысило 25 тыс. человек, а убытки составили около 8 млрд долларов .

Сильные землетрясения приводят к серьезным изменениям природной среды. Меняются рельеф земной поверхности, конфи­гурация водораздельных пространств и горных хребтов, возника­ют новые прибрежные и подводные равнины, грабены и горсты, рвы и трещины, по которым перемещаются блоки земной коры, образуя сбросы и взбросы.

Во время одного из самых сильных в истории человечества Гоби-Алтайского 12-балльного землетрясения в 1957 г. хребет Гурван-Соихан высотой до 4000 м и протяженностью 257 км был припод­нят и сдвинут к востоку. Образовались многочисленные разрывные нарушения, в частности, грабены шириной 800 м и длиной до 3,5 км, длинные тектонические рвы с зияниями до 19 м, а водо­раздельный участок г. Битут протяженностью 3 км и длиной 1,1 км опустился на 328 м. На северном склоне хребта Хамар-Дабан были сорваны и сброшены в долину островерхие пикообразные верши­ны гор. Они слились вместе в виде усеченных конусов, образовав плосковерхий водораздел.

Последствия землетрясений бывают особенно катастрофичны, когда они провоцируют экзогенные гравитационные процессы - обвалы, камнепады, оползни и сели.

Землетрясения в силу своего мгновенного действия вызывают сильные разрушения и приводят к большим жертвам. Продолжи­тельность главного толчка, характеризующегося наибольшей магнитудой, редко превышает одну минуту. Это бедствие застает лю­дей врасплох. Повторные подземные толчки - афтершоки - про­являются длительное время, и население успевает к ним подгото­виться.

Несмотря на проводимые в больших масштабах исследователь­ские работы по прогнозированию землетрясений, до сих пор не предложено реальной методики прогноза. В принципе предугадать возникновение землетрясения реально, так как после соответству­ющих исследований составляют специальные сейсмогеологические карты, но сказать точно, в каком конкретном месте и когда может произойти землетрясение, крайне сложно и на сегодняш­ний день практически невозможно.

Исходя из невозможности на современном уровне развития на­уки и технической ее оснащенности предсказать и предотвратить разрушительные землетрясения, большое значение приобретает обучение населения поведению в сейсмоопасных регионах и сейс­мостойкое строительство в этих районах. В комплекс антисейсми­ческих мер входит создание железобетонных сейсмических поясов, уменьшение веса кровли и межэтажных перекрытий, отказ от вы­ступающих тяжеловесных деталей - карнизов, балконов, лоджий .

Землетрясение – это резкие импульсные сотрясения участков земной поверхности. Эти сотрясения могут быть вызваны разными причинами, что позволяет по происхождению землетрясения разделять на следующие главные группы:

  • тектонические, обусловленные высвобождением энергии, возникающей вследствие деформаций толщ горных пород;
  • вулканические, связанные с движением магмы, взрывом и обрушением вулканических аппаратов;
  • денудационные, связанные с поверхностными процессами (крупными обвалами, обрушением сводов карстовых полостей);
  • техногенные, связанные с деятельностью человека (добыча нефти и газа, ядерные взрывы и пр.).

Наиболее частыми и мощными являются землетрясения тектонического происхождения. Напряжения, вызванные тектоническими силами, накапливаются в течение некоторого времени. Затем, когда превышается предел прочности, происходит разрыв горных пород, сопровождающийся выделением энергии и деформацией в виде упругих колебаний (сейсмических волн). Область внутри Земли, где происходит образование разломов и возникновение сейсмических волн, называют очагом землетрясения ; очаг является областью зарождения землетрясения. Как правило, главному сейсмическому удару предшествуют предварительные более слабые точки – форшоки (англ. «fore» - впереди + «shock» - удар, толчок ), связанные с началом образовании разломов. Затем происходит главный сейсмический удар и следующие за ним афтершоки. Афтершоки – это подземные толчки, следующие за главным толчком из одной с ним очаговой области. Число афтершоков и продолжительность их возникновения возрастает с ростом энергии землетрясения, уменьшением глубины его очага и может достигать нескольких тысяч. Их образование связано с возникновением новых разломов в очаге. Таким образом, землетрясение обычно проявляется в виде группы сейсмических толчков, состоящей из форшоков, главного толчок (сильнейшего землетрясение в группе) и афтерошоков. Сила землетрясения определяется объёмом его очага: чем больше объём очага, тем сильнее землетрясение.

Условный центр очага землетрясения называют гипоцентром , или фокусом землетрясения. Его объём можно очертить по расположению гипоцентров афтершоков. Проекция гипоцентра на поверхность называется эпицентром землетрясения. Вблизи эпицентра колебания земной поверхности и связанные с ними разрушения проявляются с наибольшей силой. Территория, где землетрясение проявилось с максимальной силой, называется плейстосейстовой областью . По мере удаления от эпицентра интенсивность землетрясения и степень связанных с ним разрушений уменьшается. Условные линии, соединяющие территории с одинаковой интенсивностью землетрясения называются изосейстами . От очага землетрясения изосейсты вследствие разной плотности и типа грунтов расходятся в виде эллипсов или изогнутых линий.

По глубине гипоцентров землетрясения делятся на мелкофокусные (0-70 км от поверхности), среднефокуные (70-300 км) и глубокофокусные (300-700 км). Основанная часть землетрясений зарождается в очагах на глубине 10-30 км, т.е. относится к мелкофокусным.

Регистрация и измерение интенсивности землетрясений

Ежегодно на Земле регистрируется несколько сотен тысяч землетрясений, часть из них оказываются разрушительными, часть вообще не ощущается людьми. Интенсивность землетрясений может быть оценена с двух позиций: 1) внешнего эффекта землетрясения и 2) измерения физического параметра землетрясения – магнитуды.

Определение внешнего эффекта землетрясения основано на определении его интенсивности , представляющей собой меру величины сотрясения грунта. Она определяется степенью разрушения построек, характером изменения земной поверхности и ощущениями, которые испытывают люди во время землетрясений. Интенсивность землетрясений измеряется в баллах.

Разработано несколько шкал для определения интенсивности землетрясений. Первая из них была предложена в 1883-1884 гг. М. Росси и Ф. Форелем, интенсивность в соответствии с этой шкалой измерялась в интервале от 1 до 10 баллов. Позднее, в 1902 г. в США была разработана более совершенная 12-балльная шкала, получившая название шкалы Меркалли (по имени итальянского вулканолога). Этой шкалой, несколько видоизменённой, и в настоящее время широко пользуются сейсмологи США и ряда других стран. В нашей стране и некоторых европейских странах используется 12-балльная международная шкала интенсивности землетрясений (MSK-64), получившая название по первым буквам её авторов (Медведев –Шионхойер - Карник).

Шкала MSK-64 (с упрощениями)
Баллы Критерии
ОДИН БАЛЛ Людьми такое землетрясение не ощущается, за исключением единичных наблюдателей, находящихся в особо чувствительных местах и занимающих определенные положения. Толчки регистрируются только специальными сейсмографами.
ДВА БАЛЛА Землетрясение очень слабое. Колебание почвы ощущается немногими людьми, находящимися в покое, главным образом в самых верхних этажах зданий, расположенных в непосредственной близости от эпицентра.
ТРИ БАЛЛА Землетрясение слабое. Колебания ощущаются в помещениях, главным образом в верхних этажах высотных зданий. Во время этого землетрясения раскачиваются подвешенные предметы, особенно люстры, скрипят и приходят в движение раскрытые двери. Стоящие автомобили начинают слегка раскачиваться на рессорах. Некоторые люди способны оценить длительность сотрясения.
ЧЕТЫРЕ БАЛЛА Умеренное землетрясение. Оно ощущается многими людьми и особенно теми, кто находится в помещении. Лишь немногие люди могут почувствовать такое землетрясение на открытом воздухе, и только те, кто в данное время находится в покое. Некоторые люди ночью от такого землетрясения пробуждаются. В момент землетрясения раскачиваются подвешенные предметы, дребезжат стекла, хлопают двери, звенит посуда, трещат деревянные стены, карнизы и перекрытия. Заметно покачиваются на рессорах стоящие автомашины.
ПЯТЬ БАЛЛОВ Ощутимое землетрясение. Оно чувствуется всеми людьми, где бы они ни находились. Просыпаются все спящие. Двери раскачиваются на петлях и открываются самопроизвольно, стучат ставни, захлопываются и открываются окна. Жидкость в сосудах раскачивается и иногда переливается через край. Бьется часть посуды, трескаются оконные стекла, местами в штукатурке появляются трещины, опрокидывается мебель. Маятниковые часы останавливаются. Иногда раскачиваются телеграфные столбы, опорные мачты, деревья и все высокие предметы.
ШЕСТЬ БАЛЛОВ Сильное землетрясение. Ощущается всеми людьми. Многие люди в испуге покидают помещение. В момент колебания почвы и после них походка становится неустойчивой. Бьются окна и стеклянная посуда. Отдельные предметы падают со стола. Падают картины. Приходит в движение и опрокидывается мебель. Появляются трещины на стенах в кирпичной кладке. Заметно сотрясаются деревья и кусты.
СЕМЬ БАЛЛОВ Очень сильное землетрясение. Люди с трудом удерживаются на ногах. В испуге инстинктивно выбегают из помещений. Дрожат подвешенные предметы. Ломается мебель. Многие здания получают сильные повреждения. Печные трубы обламываются на уровне крыш. Обваливается штукатурка, плохо уложенные кирпичи, камни, черепица, карнизы и неукрепленные специально парапеты. Появляются значительные трещины в грунте. Происходят оползни и обвалы на каменистых и глинистых склонах. Самопроизвольно звонят колокола. В реках и открытых водоемах мутнеет вода. Из бассейнов вода выплескивается. Повреждаются бетонные оросительные каналы.
ВОСЕМЬ БАЛЛОВ Разрушительное землетрясение. Типовые здания получают значительные повреждения. Иногда частично разрушаются. Ветхие постройки разрушаются. Происходит отрыв панелей от каркасов. Покачиваются и падают печные и фабричные трубы, памятники, башни, колонны, водонапорные башни. Ломаются сваи. Обламываются ветви на деревьях, возникают трещины во влажном грунте и на крутых склонах.
ДЕВЯТЬ БАЛЛОВ Опустошительное землетрясение. От действия такого землетрясения возникает паника. Дома разрушаются. Серьезно повреждаются плотины и борта водохранилищ. Рвутся подземные трубопроводы. На земной поверхности появляются значительные трещины.
ДЕСЯТЬ БАЛЛОВ Уничтожающее землетрясение. Большая часть построек разрушается до основания. Обрушиваются некоторые хорошо построенные деревянные здания и мосты. Серьезные повреждения получают дамбы, насыпи и плотины. На земной поверхности появляются многочисленные трещины, некоторые из них имеют ширину около 1 м. Возникают большие провалы и крупные оползни. Вода выплескивается из каналов, русел рек и из озер. Приходят в движение песчаные и глинистые грунты на пляжах и низменных участках. Слегка изгибаются рельсы на железных дорогах. Ломаются крупные ветви и стволы деревьев.
ОДИННАДЦАТЬ БАЛЛОВ Катастрофическое землетрясение. Сохраняются только немногие, особо прочные каменные здания. Разрушаются плотины, насыпи, мосты. На поверхности земли появляются широкие трещины, уходящие глубоко в недра. Подземные трубопроводы полностью выходят из строя. Сильно вспучиваются рельсы на железных дорогах. На склонах возникают крупные оползни.
ДВЕНАДЦАТЬ БАЛЛОВ Сильное катастрофическое землетрясение. Полное разрушение зданий и сооружений. До неузнаваемости изменяется ландшафт, смещаются скальные массивы, оползают склоны, возникают крупные провалы. Поверхность земли становится волнообразной. Образуются водопады, возникают новые озера, изменяются русла рек. Растительность и животные погибают под обвалами и осыпями. Обломки камней и предметов взметаются высоко в воздух.

В соответствии с этой шкалой землетрясения подразделяются на слабые - от 1 до 4 баллов, сильные - от 5 до 7 баллов и сильнейшие - более 8 баллов.

Оценка интенсивности землетрясений, хотя и опирается на качественную оценку эффекта землетрясения (воздействие землетрясения на поверхность), но не позволяет проводить математически точное определение параметров землетрясения.

В 1935 г. американским сейсмологом Ч. Рихтером была предложена более объективная шкала, основанная на измерении магнитуды (эта шкала впоследствии стала широко известна как шкала Рихтера). Магнитуда (от лат. «magnitudo» – величина ), согласно определению Ч. Рихтера и Б. Гуттенберга, это величина, представляющая собой десятичный логарифм максимальной амплитуды сейсмической волны (в тысячных долях миллиметра), записанной стандартным сейсмографом на расстоянии 100 км от эпицентра землетрясения .

Хотя в этом определении не уточняется, какие из существующих волн надо принимать в расчет, стало общепринятым измерять максимальную амплитуду продольных волн (для землетрясений, очаг которых располагается вблизи поверхности, обычно измеряется амплитуда поверхностных волн). В целом, магнитуда характеризует степень смещения частиц грунта при землетрясениях: чем больше амплитуда, тем значительнее смещение частиц.

Шкала Рихтера теоретически не имеет верхнего предела. Чувствительные приборы регистрируют толчки с магнитудой 1,2, в то время как люди начинают ощущать толчки только с магнитудой 3 или 4. Наиболее сильные землетрясения, происшедшие в историческое время, достигали магнитуды 8,9 (печально знаменитое землетрясение в Лиссабоне в 1755 г.).

Между интенсивностью землетрясения в эпицентре (I 0), которая выражается в баллах, и величиной магнитуды (М) существует зависимость, описываемая формулами

I 0 = 1,7М-2,2 и М = 0,6I 0 +1,2 .

Соотношение между балльностью и магнитудой зависит от расстояния между очагом и точкой регистрации на поверхности земли. Чем меньше глубина очага, тем больше интенсивность сотрясения на поверхности при одной и той же магнитуде.

Следовательно, землетрясения с одинаковой магнитудой могут вызывать разные разрушения на поверхности в зависимости от глубины очага.

Регистрация землетрясений проводится на сейсмических станциях с помощью специальных приборов – сейсмографов, записывающих даже малейшие колебания грунта. Запись колебаний называют сейсмограммой. Сейсмограммы должны регистрировать колебания грунта в двух взаимоперпендикулярных направлениях в горизонтальной плоскости и колебания в вертикальной плоскости, для чего в состав сейсмографов включены три записывающих устройства (сейсмометра). На основании определения разницы во времени регистрации разных типов сейсмических волн, и зная скорость их распространения, можно определить положение гипоцентра землетрясения. Точность таких определений достаточно высока, особенно с учётом того, что к сегодняшнему дню действует развитая международная сеть сейсмических станций.

Для характеристики землетрясений важное значение имеют также их энергия и ускорение при сотрясении грунта.

Энергия, выделяемая при землетрясении, может быть рассчитана исходя из значения магнитуды по формуле

log Е = 11,5 M , где Е – энергия, М – магнитуда.

Величина ускорения показывает, с какой скоростью происходит сотрясение грунта. Ускорения, получаемые грунтом, передаются сооружениям, которые начинают раскачиваться и разрушаться. Для измерения ускорения пользуются показаниями специальных приборов - акселерографов, которыми оснащены современные сейсмографы. Ускорения в горизонтальном направлении всегда больше, чем в вертикальном. Так, максимально высокие из зарегистрированных горизонтальных ускорений составляют 1,15g, а максимально высокие вертикальные - до 0,7g. Именно поэтому наиболее опасными считаются горизонтальные толчки.

Размещение сейсмически активных зон

Подавляющее большинство землетрясений приурочены к тектонически активным зонам земной коры, связанным с границами литосферных плит. Так высокосейсмичным районом является обрамление Тихого океана, где океаническая литосферная плита поддвигается под континентальные или более древние океанические плиты (процесс поддвига океанической плиты называют субдукцией). Зоны поддвига плиты и её погружения в мантию трассируется положением очагов землетрясений, фиксируемых до поверхности нижней мантии (граница 670 км, связанная с возрастанием плотности вещества) и иногда глубже. Эти зоны получили название сейсмофокальных зон Беньофа. Ещё одна область активной сейсмичности связана с Альпийско-Гималайским поясом, протягивающимся от Гибралтара до Бирмы. Этот грандиозный складчатый пояс образован в результате столкновения континентальных литосферных плит. В пределах этого пояса очаги землетрясений приурочены главным образом к земной коре (глубинам до 40-50 км) и не образуют выраженных сейсофокальных зон. Их образование связано с процессами скучивания и раскалывания на надвигающиеся друг на друга пластины толщ континентальной литосферы. Очаги землетрясений приурочены и к зонам раздвижения и раскалывания плит. Процесс раздвижения литосферных, сопровождающийся формированием новой океанической коры за счёт мантийных расплавов, активно протекает в зонах срединно-океанических хребтов. Растяжение континентальных литосферных плит (происходящее, например, в Восточной Африке или в районе озера Байкал).

Loading...Loading...