Сварка углеродистых сталей – как правильно выполнить сварочный процесс? Пористость при сварке алюминия

Чугун – сплав железа с углеродом (содержание углерода >2%) и другими химическими элементами, играет важную роль в современной металлургии и машиностроении. Изделия из него прочны, обладают хорошей износостойкостью, устойчивы к трению, а так же хорошо поддаются обработке режущим инструментом. Все это, а так же низкая стоимость и отличные литейные свойства делают чугун очень популярным материалом.

Особые навыки и умения требуются для обработки чугуна

Однако, этот металл очень хрупок, и эта хрупкость – причина больших проблем. Нагрев чугуна сильно меняет его структуру, поэтому сварка (и в особенности холодная сварка) чугуна является делом очень непростым. Между тем, при ремонте чугунных изделий, создании сварочно-литых конструкций и исправлении брака в литье сварка чугуна просто необходима.

Основные проблемы при сварке.

Проблемы возникают разные, но все они ведут к одному результату – ослаблению прочности шва до неприемлемых значений и невозможности использовать деталь по назначению.

  • Сварные швы чугуна подвержены очень быстрому охлаждению. При охлаждении в зоне шва образуется белый чугун, который почти не поддается механической обработке. Он испортит внешний вид детали и механические свойства шва. Убрать его будет очень трудно.
  • Чугун, как уже говорилось выше, хрупкий металл, и при неравномерном нагреве в процессе сварки он сильно меняет свою структуру. Из-за этого в швах могут образоваться трещины, и это будет являться браком, так как прочность такого шва будет низкой.
  • Чугун – жидкотекучий металл, и удержать его в сварочной ванне – задача не из легких. Расплескивание металла не только осложнит процесс сварки, но может так же стать причиной серьезных ожогов. В случае выброса большого количества металла даже спецодежда вряд ли защитит от травмы.
  • При сварке чугуна выделяется большое количество газов, это ведет к образованию пор на шве и нарушению его целостности.
  • Из-за окисления кремния при сварке иногда возникают так называемые тугоплавкие оксиды. Температуры сварочной дуги недостаточно, чтобы их прожечь, появляются непровары. Внешне такой шов выглядит нормально, но его надежность оставляет желать лучшего.

Подготовка чугуна к сварке. Требования к качеству швов.

Чтобы избежать проблем, описанных выше, при сварке чугуна, необходимо соблюдать следующие правила:

  • Поверхность под сварку должна быть чистой – удалите с нее все следы грязи, налета, масла, копоти, жира. Обезжирьте поверхность спиртом или специальным составом. Поверхность должна быть сухая.
  • Поверхность должна быть гладкой – если на ней есть бугры, неровности, их можно удалить механическим способом.

Эти подготовительные меры помогут избежать растрескивания чугуна и получить хорошее качество сварных швов.

Что такое качественный сварной шов? Сварные швы должны быть непроницаемыми, обладать необходимыми механическими свойствами, быть прочными, одноцветными, поддаваться механической обработке. Сварные швы не должны иметь трещин, бугров, пор, пузырей. Подробные требования к сварным швам изложены в технологических процессах.

В зависимости от этих и других требований, а так же от вида свариваемых изделий, объема работ и технологических возможностей выбирается наиболее подходящая технология сварки чугуна:

  • Холодная сварка чугуна (без подогрева)
  • Горячая сварка чугуна (с подогревом)

Немного о холодной сварке.

Холодная сварка чугуна – сварка без предварительного нагрева детали. Она может осуществляться электродами, аргоновой дугой, либо полуавтоматом. Самым простым и наиболее распространенным способом является холодная сварка чугуна электродами. Для этого можно использовать электроды на никелевой, стальной и медной основе. Электроды на медной основе изготавливаются из сплава олова или алюминия. Первые помогают получать пластичные швы, удобные для дальнейшей обработки, а вторые – увеличивают прочностные характеристики шва. А с помощью стальных электродов можно получить шов, который вообще не поддастся механической обработке. Все эти моменты необходимо учитывать при выборе материалов.

Следующий способ холодной сварки – аргоновая дуга. Лучше всего для сварки чугуна подходят никелевые присадочные прутки. Способ довольно дорогой, и чтобы сэкономить, часто используют алюминиево-бронзовые прутки. Они дешевле, но их применение ограничено: если деталь будет подвергаться тепловому воздействию, их применять нельзя! И не стоит забывать о специальных средствах защиты – испарения, образующиеся во время соединения металла аргоном, очень вредны для здоровья. Если есть возможность, используйте маски или респираторы с принудительной вентиляцией.

Так же холодная сварка чугуна возможна и полуавтоматическими машинами. Для полуавтоматической обработки чугуна используют следующие типы проволок и смеси газов:

  • Кремний-бронзовая проволока с защитой из аргона и гелия (50% + 50%)
  • Никелевая проволока с защитой из аргона (100%)
  • Стальная проволока с защитой из аргона и углекислого газа (80% и 20%)

Независимо от выбранного способа холодной сварки, существуют общие требования – своеобразная инструкция, которая поможет получить отличный результат:

  • Детали должны быть чистыми (это правило действует не только при сварке чугуна)
  • Швы необходимо простукивать молотком (для снятия остаточных напряжений)
  • Сварку нужно проводить низкими токами и на коротких участках (идеальная длина шва – не более 30 мм).
  • После окончания работ необходимо, чтобы изделие остывало постепенно.
  • Не забывайте об общих требованиях безопасности — рабочее место должно быть хорошо освещено и оборудовано вентиляцией, а у вас должна быть вся необходимая спецодежда.

Сварка чугунных изделий с подогревом

Холодная сварка чугуна применяется главным образом при мелком ремонте, когда нет возможности организовать полноценный технологический процесс. Этот вид сварки дает хорошие результаты, но требует осторожности, так как есть большой риск испортить деталь. Преимуществом холодного метода является возможность работать в одиночку.

Сварка с подогревом – уровень «Мастер»

Идеальной с точки зрения получения качественного результата при сварке чугуна является горячая сварка. Она позволяет в корне пресечь такие неприятности, как растрескивание швов, появление белого чугуна и образование пор. Горячая сварка чаще всего используется на крупных предприятиях, где есть необходимое оборудование: нагреватели, печи, изоляционные камеры, а так же грузоподъемные механизмы.

Технологический процесс горячей сварки довольно сложен. Суть его в том, чтобы обеспечить нагрев детали до определенной температуры и поддержание этой температуры в процессе обработки. Инструкция довольно проста:

  • Нагреть деталь до 600 градусов
    Вести сварку высокими токами
  • Обеспечить равномерное постепенное охлаждение детали (для этого ее можно накрыть специальным материалом, поместить в печь или просто в песок).

Можно нагреть деталь до температуры 300-400 градусов. Такая сварка называется полугорячей.

Температура — не выше 750 градусов по Цельсию. Иначе чугун начнет плавиться. Подача тепла — равномерная. Резкие скачки температуры приведут к растрескиваниям металла и деталь будет безнадежно испорчена.

Для горячей сварки используются чугунные или угольные электроды. Это позволяет получить в шве металл, идентичный тому, из которого изготовлена деталь и придает шву хорошие механические свойства.

Горячую сварку, в отличие от холодной, ведут большими токами и непрерывно, до окончания заварки дефекта, либо завершения шва. При больших объемах работают попеременно два сварщика. Чем непрерывнее шов – тем он лучше.

Выбор режимов сварки зависит от толщины металла. Чем толще металл – тем больше сила тока и диаметр используемых электродов. Рекомендуемые диаметры электродов и силы тока представлены в таблице 1.

Таблица 1

Вот, пожалуй, основные способы сварки чугуна. Можно сделать вывод, что сварка чугуна – процесс хоть и сложный, но отнюдь не невозможный. При правильном подходе к делу нет ничего, что могло бы помешать вам получить качественный результат. Надеемся, данная статья была вам полезна. Свои отзывы, пожелания, предложения вы можете написать в комментариях!

К ним относятся:

  • высокое содержание углерода (чем выше, тем хуже сваривается);
  • высокая жидкотекучесть;
  • возможность образования в процессе сварки тугоплавких окислов (их температура плавления гораздо выше температуры плавления самого чугуна);
  • склонность к появлению трещин (из-за неоднородности металла), пор (из-за выгорания в процессе сварки углерода).

Все это негативно сказывается на свариваемости и чугун справедливо считают материалом, который плохо поддается сварке. Особенно когда сварку производят дома и нет возможности узнать, какой же марки чугун сваривается. Многие судят о свариваемости чугунного изделия по его излому.

Если излом черный или темно-серый, то придется поднатужиться, чтобы восстановить первоначальные его свойства или вообще не заниматься сварочными работами, не имея специальных электродов и не зная тонкостей технологии.

Основные виды сварки

Специалисты используют 2 вида сварки чугуна – холодный способ и горячий. При холодной сварке необходимо применение электродов, специально предназначенных для сварки чугуна.

Можно сваривать чугунные изделия в холодном состоянии (без подогрева) с применением стальных электродов, изготовленных из низкоуглеродистой стали, но это требует больших усилий от сварщика и понимания им процессов, которые происходят в зоне сварки. Обусловлено этой свойствами чугуна. Металл после окончания сварки быстро охлаждается и это приводит к его хрупкости, что может вызвать появление трещин.

Сварка чугуна - технология сварка изделий из чугуна. Чугун является трудносвариваемый металлом. Он сваривается плавящимися или неплавящимися электродами с подогревом или без него. Чугун представляет собой сплав железа с углеродом. Содержание углерода в чугуне - около 2,14%. Углерод придаёт сплавам железа твёрдость, снижает пластичность и вязкость. Углерод в чугуне содержатся в виде цементита и графита.

Температура плавления чугуна - от 1 150 до 1 200 °C , что на 300 °C ниже, чем у чистого железа. Теплопроводность чугуна ниже, чем у сталей, коэффициент теплового расширения такой же. Электропроводность чугуна зависят от распределения включений графита.

При быстром охлаждении чугуна от температуры более 750°С металла, графит превращается в цементит, при это чугун превращается из серого в белый. Образуется закаленная структура с внутренними напряжениями, приводящими к трещинам.

рудности сварки чугуна обусловлены образованием трещин из-за включений графита; выгоранием углерода и образованием пор в шве; образованием тугоплавких окислов с температурой плавления выше, чем у чугуна; его высокая жидкотекучесть.



Чугун сваривается ручной дуговой сваркой плавящимися (ЦЧ-4) или неплавящимися (вольфрамовый, угольны, графитовый) электродами в подогревом или без него. Сварочные напряжения, возникающие в шве при охлаждении металла снимаются проковкой швов.

При холодной сварке чугуна используются железно-никелевые, медно-железные, железно-медно-никелевые электроды следующих марок:

· медно-железные электроды: ОЗЧ-2 и ОЗЧ-6;

· никелевые и железно-никелевые электроды: ОЗЖН-1, ОЗЧ-3, ОЗЧ-4;

· железно-медно-никелевые электроды: МНЧ-2.

При горячей сварке металл предварительно подогревается до 500-700°С. Используются чугунные электроды со стержнями марок А и Б - ОМЧ-1 и УЗТМ-74. Электроды должны быть большого диаметра - от 8 до 16 мм.

Для повышения качества шва при сварке чугуна проводится подогрев детали и ее медленное охлаждение после сварки.

Способы сварки чугуна

Сварка чугуна применяется в ремонтных целях и для изготовления сварнолитых конструкций. К сварным соединениям чугунных деталей в зависимости от типа и условий эксплуатации предъявляют требования по механической прочности, плотности (водонепроницаемость, газонепроницаемость) и обрабатываемости режущим инструментом. Обеспечить эти требования при сварке весьма сложно из-за физико-химических особенностей чугуна.

Трудности, возникающие при сварке чугуна, обусловлены, как правило, низкой стойкостью металла сварного соединении против образования трещин плохой его обрабатываемостью на механических станках.

Низкая стойкость основного металла и металла околошовной зоны против образования трещин характерна для чугуна пониженным запасом деформационной способности (пониженная прочность и пластичность).



Указанные особенности чугуна являются следствием нарушения сплошности его металлической основы включениями графита, а также склонностью его к отбелке и закалке даже при небольших скоростях охлаждения. Эти свойства чугуна определяются высоким содержанием углерода в нем.

Соединение чугунных деталей между собой выполняют газовой сваркой, пайкой, термитной сваркой, литейной сваркой, дуговой сваркой и электрошлаковой.

Сварку ведут без подогрева (холодный способ сварки),с местным подогревом и с общим подогревом всего изделия. Для дуговой сварки используют угольные, графитовые, стальные и легированные электроды, а также электроды из цветных металлов. Подготовку мест под сварку выполняют механическим путем или огневым способом. Для удержания расплавленного металла сварочной ванны (чугун жидкотекуч) применяют специальиые формовки. Назначение формовки - удерживать расплавленный металл. Формовочная масса имеет следующий состав: кварцевый песок, замешанный на жидком стекле 40%, формовочная земля 30% и белая глина 30%.

Подготовленная к сварке деталь подвергается общему или местному подогреву до температуры 350 - 450º С. Иногда для особо сложных деталей подогрев производят до температуры 550-600° С.

Сварку выполняют как на переменном, так и на постоянном токе. Величину тока подбирают из расчет 50-90 А на 1 мм диаметра электрода.

Особенности сварки меди

обусловлены ее физическими и химическими свойствами. Медь имеет температуру плавления 1080-1083°С. При температурах 300-500°С она обладает горячеломкостью. Жидкая медь растворяет кислород и водород. С кислородом она образует закись меди Cu 2 O, температура плавления которой на 20° ниже температуры плавления чистой меди.

{\displaystyle {\mathsf {4Cu\ +\ O_{2}\ {\xrightarrow {>200\ ^{\circ }C}}\ 2Cu_{2}O}}}

Наличие закиси приводит к образованию горячих трещин после сварки. Проявление «водородной болезни меди» обусловлено тем, что при химическом соединении водорода с кислородом образуется стремящийся расшириться водяной пар, то, в свою очередь, приводит к трещинам в металле шва.

Медь имеет высокую тепло- и электропроводностью. Теплопроводность меди в 6-7 раз превышающей теплопроводность стали, она имеет также хорошую жидкотекучестью в расплаве.

Удельная электропроводность меди при 20 °C: 55,5-58 МСм/м .

Свариваемость меди максимальна в отсутствии примесей. Примеси свинца, мышьяка и др. затрудняют сварку. При сварке медь не должна загрязняться примесями. Металлы в примеси с медью - хром, марганец, железо и др. способствуют повышению прочности шва.

Особенности сварки[править | править вики-текст]

Сварка меди и сплавов может проводиться газовой сваркой. При ручная дуговой сварке покрытыми электродами возможно загрязнение металла шва легирующими компонентами. Из-за большой теплопроводности меди при дуговой сварке надо применять больший ток.

Поскольку при сварке образуется закись меди, то сварку надо проводить быстро, со скоростью около 0,25 м/мин. Для сварки меди толщиной от 6 мм используют предварительный подогрев заготовок.

Особенности дуговой сварки трубопроводов из меди и медно-никелевого сплава. Основные типы, конструктивные элементы и размеры соединений из меди и медно-никелевого сплава

Особенности сварки алюминия и его сплавов связана с физическими и химическими свойства металла. Алюминий имеет малый удельный вес - 2, 7 г / см3 , высокую электро- и теплопроводность, на его поверхности есть окисная пленка, имеющая высокую температуру плавления 2044°C, температура же плавления самого алюминия - около 660°C. Сплавы алюминия с марганцем, кремнием, магнием и медью обладают большей прочностью, чем сам алюминий.

Тугоплавкая пленка на каплях расплавленного металла, препятствует сплавлению металла, поэтому при сварке необходима защита от воздуха. Такой защитой может быть сварка алюминия в среде с аргоном.

Значительная жидкотекучесть алюминия затрудняет управление сварочной ванной. Для быстрейшего охлаждения металла необходимо использование теплоотводящих подкладок.

Сварочное соединение алюминия и его сплавов склонно к образованию кристаллизационных трещин, что обусловлено растворением в металле водорода. В сплавах алюминия трещины возникают из-за повышенного содержания кремния. Металл обладает большой усадкой, что является причиной деформаций при остывании заготовок.

Значительная теплопроводность алюминия требует применения сварочного тока, превосходящего в несколько раз ток при сварке сталей .

Способы сварки[править | править вики-текст]

Сварка алюминия производится с разрушением оксидной пленки (очистка и обезжиривание) на его поверхности и защитой с помощью инертных газов. Перед сваркой металл подогревают. Подогрев металла проводится до температуры 250-300°С для заготовок средних толщин, и до 400°С - для толстых. Распространены следующие способы сварки:

· сварка вольфрамовым электродом в инертных газах (режим AC TIG);

· сварка полуавтоматами в среде инертных газов и автоматизированной подачей проволоки (режим DC MIG);

· сварка покрытыми плавящимися электродами без использования защитного газа (режим MMA).

Сразу после детали промываются водой, а со шва удаляется шлак.

Разнородная сварка[править | править вики-текст]

Алюминий можно сваривать с другими металлами. Особенности разнородной сварки металлов заключается в различии их температуры плавления, плотности, в коэффициентах линейного расширения. Процесс затруднен свойствами самого алюминия.

Сварка стали с алюминием и его сплавами выполняется аргонодуговой сваркой с вольфрамовым электродом. Перед сваркой кромки металлов очищаются и на них наносятся активирующее покрытие. Наиболее дешевое из них - цинковое. В качестве присадочного материала используется проволока марки АД1 из чистого алюминия с присадкой кремния.

Особенностью сварки алюминия со сталью является расположение сварочной дуги:при сварке встык дуга ведется по кромке алюминиевой детали, а присадка ведется по кромке стальной детали. При этом жидкий алюминий натекает на поверхность стали, покрытой цинком.

Основная трудность сварки титана - это необходимость надежной защиты металла, нагреваемого выше температуры 400 °C, от воздуха, так как на его поверхности под действием воздуха образуется оксидная пленка. Металл обладает высокой химической активностью по отношению к кислороду, азоту и водороду при его нагреве и расплавлении. Водород в небольшом количестве сильно ухудшает свойства титана.

К основным способам сварки титана и его сплавов относятся:

· дуговая сварка в среде инертных газов неплавящимся или плавящимся электродом;

· дуговая сварка титана под флюсом;

· электрошлаковая сварка;

· электронно-лучевая сварка;

· контактная сварка.

Дуговая сварка титана проводится в среде газа аргона или в его смесях с гелием. Сварку производят под местной защитой. Газ проходит через сопло горелки с насадками, увеличивающими зону защиты. С обратной стороны стыка свариваемых деталей устанавливают медные подкладные планки с канавкой, по длине которой равномерно подают аргон. При сложной конструкции деталей сварка проходит с общей защитой в специальных камерах с контролируемой атмосферой. Камеры могут представлять собой камеры-насадки для защиты части свариваемого узла, жесткие камеры из металла или мягкие камеры, сделанные из ткани и имеющими смотровые окна и встроенные рукавицы для рук сварщика. В камеры помещаются свариваемые детали, сварочная оснастка и горелка. Для крупных узлов применяют большие металлические камеры объёмом до 350 куб. м., в них устанавливают сварочные автоматы и манипуляторы. Из камеры откачивается воздух, она наполняются аргоном, через шлюзы в камеры входят сварщики в скафандрах и проводят сварку.

Титановые сплавы из-за высокой химической активности сваривают дуговой сваркой в инертных газах неплавящимся и плавящимся электродом, дуговой сваркой под флюсом, электронным лучом, электрошлаковой и контактной сваркой. Расплавленный титан жидкотекуч, его шов хорошо формируется при всех способах сварки.

Дуговую сварку титановых сплавов выполняют плавящимся электродом (проволока диаметром от 1,2 до 2,0 мм) на постоянном электрическом токе обратной полярности в режимах, обеспечивающих мелкокапельный перенос электродного металла. Защитной средой при этом является смесь - 20 % аргона и 80 % гелия или чистый гелий. При этом увеличивается ширина шва и уменьшается его пористость.

Титановые сплавы можно также сваривать дуговой сваркой под бескислородными фтористыми флюсами сухой грануляции марки АНТ1, АНТЗ для толщины 2,5...8,0 мм и марки АНТ7 для толстого металла. Сварка ведется с использованием электродной проволоки диаметром от 2,0 до 5,0 мм с вылетом электрода на 14 - 22 мм на медной подкладке или на флюсовой подушке. Структура металла сварного шва в результате модифицирующего действия флюса получается более мелкозернистой, чем при сварке титана в инертных газах.

Температура плавления меди 1083°С

Марка

Свариваемость

Технологические особенности сварки

Медь катодная

Электродная проволока Бр.КМц 3-1; МНЖКТ-5-1 -0,2-0,2; Бр.ОЦ 4-3; Бр.ОЦ 4-3; БР.Х 0,7

При толщине более 8-10 мм необходим предварительный подогрев до 200-300°С

М00к, М0к, М1к

Хорошая

Медь раскисленная

Mlp, М2р, МЗр

Медь рафинированная

Хорошая

Бронзы оловянные литейные

Электродная проволока той же марки, что и основной металл

При толщине более 10-15 мм необходим предварительный подогрев до 500-600°С

Защитные газы Ar, Не, N 2

Бр03Ц12С5, Бр05Ц5С5, Бр08Ц4, Бр010Ф1, Бр010Ц2

Удовлетворительная

Бр03Ц7С5Н1, Бр04Ц7С5, Бр010С10

Бронзы безоловянистые литейные

БрА9Мц2Л, БрА10ЖЗМц2, БрА11Ж6Н6, БрА7Мц15Ж3Н2ц2

Удовлетворительная

Бронзы деформируемые

Бр0ф7-0,2, БрХ1, БрКМц3-1, БрБ2

БрАМц9-2, БрАЖН9-5-2, БрАЖ9-4, БрСр1

Удовлетворительная

БрА5, БрА7

Латуни деформируемые

Электродная проволока Бр.ОЦ 4-3; Бр.КМц 3-1; ЛК62-0,5; ЛК80-3; ЛМц59-0,2

При толщине более 12 мм необходим предварительный подогрев до 300-350°С

JI96, ЛА77-2, ЛК80-2

ЛМцС58-2, ЛС3, Л062-1

Удовлетворительная

ЛС59-1, ЛС60-1

Медь и сплавы на ее основе - бронзы, латуни, медно-никелевые сплавы качественно свариваются способом MIG/MAG в инертных газах.

Трудности при сварке

Высокая теплопроводность меди (в 6 раз выше, чем у железа) осложняет сварку соединений с несимметричным теплоотводом;

Большая жидкотекучесть (в 2--2,5 раза выше, чем у стали) затрудняет сварку вертикальных и потолочных швов;

Интенсивное окисление с образованием закиси меди (Cu 2 О), хорошо растворяемой в расплавленном металле, приводит к образованию трещин;

Активная способность меди поглощать газы (кислород и водород) при расплавлении приводит к пористости шва и горячим трешинам

Большой коэффициент линейного расширения меди (в 1,5 раза выше чем у стали) влечет та собой значительные деформации и напряжения

Подготовка к сварке

Разделку меди и ее сплавов на мерные заготовки можно выполнять шлифовальной машинкой, труборезом, на токарном или фрезерном станке, а также плазменно-дуговой резкой.

Кромки под сварку подготавливают механическим способом. Для меди толщиной 6-18 мм рекомендуются V- и X-образные разделки.

Свариваемые детали и присадочную проволоку очищают от окислов и загрязнений до металлического блеска и обезжиривают. Механическую зачистку кромок выполняют наждачной бумагой, металлическими щетками и т.д. Использовать наждачную бумагу и абразивный камень с крупным зерном не рекомендуется.

Главное при сварке меди - защита сварочной ванны от кислорода. Она достигается при помощи раскисления фосфором, алюминием и серебром. Поэтому следует использовать электродную проволоку, легированную этими раскислителями.

Свариваемые кромки и присадочную проволоку можно очищать травлением в растворе, состоящем из:

  • 75 см 3 /л HNO 2 ;
  • 100см 3 /л H 2 SO 4:
  • 1 см 3 /л НСl

с последующей промывкой в воде и щелочи и сушкой горячим воздухом.

Предварительный подогрев конструкций с толщиной стенки 10-15 мм возможен газовым пламенем, рассредоточенной дугой или другими способами.

Сборку стыков под сварку ведут либо в приспособлениях, либо с помощью прихваток. Зазор в стыкуемых заготовках соблюдают одинаковым на всем протяжении. Прихватки должны быть минимального сечения, чтобы в процессе сварки их можно было переплавить. Поверхность прихваток необходимо очистить и осмотреть, чтобы на них не было горячих трещин. При сварке в нижнем положении используют графитовые подкладки или медные пластины, охлаждаемые водой.

Выбор параметров режима сварки

Плавящимся электродом в защитных газах эффективнее всего сваривать медь толщиной не менее 6-8 мм. Сварку ведут на постоянном токе обратной полярности.

Медь хорошо сваривается плавящимся электродом в аргоне, азоте, в смеси аргона с азотом и в гелии. Из-за высокой теплопроводности меди для получения надежного провара в начале сварки и хорошего сплавления кромок детали подогревают до 200-500°С. При сварке в аргоне подогрев необходим при толщине металла более 4,5 мм, а в азоте - более 8 мм

Одним из важнейших параметров режима сварки меди плавящимся электродом является длина дуги. Шов качественно формируется при длине дуги 4-5 мм.

Стыковые соединения сваривают на подкладных элементах. Импульсно-дуговая сварка (ИДС) в аргоне дает возможность выполнять вертикальные и потолочные швы, позволяет сваривать тонкий металл. При сварке в азоте процесс идет с короткими замыканиями (КЗ) с повышенным разбрызгиванием или крупнокапельным переносом (КР)

Техника сварки

Для повышения стойкости металла шва к образованию горячих трещин рекомендуются проволоки Бр.АЖНМц 8,5-4-5-1,5; Бр.МцФЖН 12-8-3-3; ММц40, Механические свойства сварных соединений в этом случае соответствуют свойствам основного металла.

Ориентировочные режимы сварки меди в нижнем положении

Вид соединения

Размеры, мм

Процесс сварки

Сварочный ток, А

Напряжение на дуге, В Скорость сварки, м/ч Диаметр электрода, мм Вылет электрода, мм Расход газа, л/мин

ИДС
КЗ

80-110
80-110

18-20
18-20

0,8-1,2
0,8

10-14
10-12

ИДС
КЗ
КЗ

Ar
N 2
Ar

140-210
140-200
140-200

19-23
20-25
19-23

25-35
25-35
25-30

0,8-1,6
0,8-1,2
0,8-1,2

10-18
10-14
10-14

8-10
8-9
8-10

КЗ
СТР
ИДС

N 2
Ar
Ar

250-320
250-320
250-320

24-27
23-26
23-28

22-28
20-25
20-25

1-1,4
1-1,6
1,2-3

10-16
10-18
12-30

СТР
СТР
КР

Ar
He
N 2

350-550
300-500
300-500

32-37
33-38
34-39

18-20
20-22
20-28

2-3
1,6-3
1,6-3

20-35
18-35
18-35

14-16
30-40
14-16

СТР
СТР
КР

Ar
He
N 2

300-500
270-500
280-500

28-36
32-38
32-39

16-18
18-22
18-22

2-4
1,5-3
1,5-3

20-40
18-35
18-35

14-18
30-40
14-16

СТР
СТР
КР

Ar
He
N 2

350-680
350-650
350-650

32-39
34-42
35-42

16-18
16-20
16-20

2-4
2-4
2-4

14-18
30-50
14-18

Медь сваривают с минимальным числом проходов.

Сварку ведут "углом вперед" справа налево. Для формирования обратной стороны шва стыковых соединений используют графитовые или медные водоохлаждаемые подкладки. Двухсторонние соединения выполняют с формированием шва на весу или по подварочному шву наложенному ручной аргонодуговой сваркой W-электродом.

Бронзы

Бронзы - сплавы меди с алюминием. Их обозначают двумя буквами "Бр" начальными буквами русских названий легирующих элементов и рядом чисел, указывающих содержание этих элементов в %.

Так, марка БрАЖМц 10-3-1,5 означает, что бронза содержит 10% алюминия, 3% железа, 1,5% марганца. В конце некоторых марок литейных бронз ставится буква "Л".

Ориентировочные режимы сварки бронз Бр.АМц 9-2, Бр.АЖМц 9-5-2 и латуни ЛМНЖ 55-3-1 в аргоне в нижнем положении (постоянный ток, обратная полярность, проволока Бр. АМц 9-2)

Вид соединения

Размер, мм

Процесс сварки

Сварочный ток, А

Напряжение на дуге, В

Скорость сварки м/ч

Диаметр электрода, мм

Вылет электрода, мм

Расход газа, л/мин

0 +1

ИДС
КЗ

150-190
160-190

23-26
22-25

20-25
20-25

1-1,5
1-1,5

10-16
10-16

0 +1,5

ИДС
КЗ

140-220
160-220

23-26
22-26

20-22
20-22

1-1,5
1-1,5

10-16
10-16

10-12
10-12

СТР
СТР

300-400
375-450

29-33
31-36

25-32
30-35

20-35
20-35

12-16
14-16

0 +2
0 +2

Трудность сваривания бронз объясняется их повышенной жидкотекучестью. При сварке бронз возникают трудности, вызванные образованием окиси алюминия, поэтому способ и технологию сварки выбирают такими, как и при сварке алюминия, а режимы - характерные для медных сплавов.

Латуни

Сплавы меди с цинком - это латуни , или медноцинковые латуни. Для улучшения свойств в сплав добавляют Al, Mn, Ni, Fe, Sn, Si и др. Такие латуни называются специальными.

Латуни обозначают буквой "Л", справа от которой пишут буквенное обозначение специально вводимых элементов (кроме Zn). затем цифру, указывающую процент меди, и наконец, проценты специально вводимых добавок в той же последовательности, в какой записаны сами элементы. В маркировке элементы обозначаются русскими буквами: Л - алюминий, Б -бериллий, О - олово, С - свинец, Н - никель, Мц - марганец, К - кремний, Мг - магний, X - хром, Ц - цинк.

ЛТ 96 - (томпак) означает медно-цинковую латунь с содержанием 96% меди и 4% цинка.

Л 68 - медноцинковая латунь с содержанием 68% меди и 32% цинка.

ЛАЖМц 70-6-3-1 - это специальная латунь с содержанием 70% меди, 6% алюминия, 3% железа, 1% марганца, 20% цинка.

Особенность сварки латуней - интенсивное испарение цинка при температуре 907°С. При этом ухудшаются механические свойства сварного соединения. Для уменьшения выгорания цинка эффективны сварка на пониженной мощности дуги, применение присадочной проволоки с кремнием, который создает на поверхности сварочной ванны окисную пленку (SiO 2), препятствующую испарению цинка.

Основными трудностями при сварке этих сталей являются:

конструктивные особенности сварных соединений;

– необходимость обеспечения свойств сварного соединения, близких или равных свойствам основного металла в течение длительного времени эксплуатации (10–15 лет);

– разупрочнение в зоне термического влияния;

– склонность металла шва и ЗТВ сварного соединения к образованию ХТ.

1. Большинство сварных соединений из жаропрочных сталей характеризуется наличием концентратов напряжений, многослойных швов, остающихся подкладок, больших толщин и т.п. (рис. 31).

Рис. 31. Сварные соединения труб с трубными досками (а),

стыковые соединения труб (б) и соединение патрубка с корпусом (в)

При сварке труб с трубными досками, патрубков и труб в корне шва существует конструктивный концентратор в виде непровара. При многослойной сварке происходит нарастание пластической деформации, ширина зоны которой в 2...3 раза превышает ЗТВ. Средняя остаточная пластическая деформация оценивается величиной 0,5...1,7 %.

Эти и другие факторы обусловливают наличие в сварных соединениях этих сталей остаточных сварочных напряжений и т.п. Снизить влияние данных факторов на работоспособность соединения можно путем тщательного выбора и применения технологических параметров сварки (режим, материалы, порядок наложения швов и т.п.).

2. В условиях длительной эксплуатации при Т = 450...600 °С возможно развитие диффузионных процессов между основным металлом и металлом шва.

В первую очередь, это относится к углероду, обладающему высокой диффузионной подвижностью. Миграция углерода может наблюдаться даже при небольшом различии в легировании их карбидообразующими элементами. Образование в процессе эксплуатации обезуглероженной (ферритной) прослойки приводит к снижению прочности и пластичности сварных соединений и к локальному разрушению. В связи с этим сварочные материалы должны обеспечивать химический состав металла шва, близкий к основному металлу.

В отдельных случаях при необходимости отказаться от подогрева и термической обработки используют сварочные материалы, обеспечивающие получение металла шва на никелевой основе. Диффузионная подвижность элементов в сплавах на никелевой основе при 450...600 °С значительно меньше, чем в сталях перлитного класса.

3. Разупрочнение в ЗТВ обусловлено влиянием термического цикла сварки или термообработки сварного соединения на термически обработанный основной металл (нормализации с последующим отпуском). В ЗТВ, где металл был нагрет в интервале Ас 1 –температура отпуска стали, возникают участки разупрочнения. При этом длительная прочность соединения монет быть снижена на 15...20 % по сравнению с основным металлом. Степень разупрочнения зависит не только от режимов термообработки, но и от параметров процесса сварки. Чем больше величина погонной энергии сварки, тем больше зона разупрочнения.

Разупрочнение металла околошовной зоны могло бы быть устранено объемной термической обработкой, но она ограничивается габаритными размерами печей и другими трудностями. Для уменьшения зоны разупрочнения сварку осуществляют узкими валиками без поперечных колебаний на оптимальных режимах.

4. Холодные трещины – хрупкие разрушения жаропрочных перлитных сталей, возникающие в процессе сварки (или после неё).

Причинами их появления являются образование метастабильных структур (троостита, мартенсита) в участках ЗТВ, нагретых выше Ас 1 , охрупчивание сварных соединений под влиянием водорода, действия "силового" и "масштабного" факторов.

Образование закалочных структур в сварном соединении определяется системой легирования сталей и скоростью охлаждения при сварке. Так, хромомолибденовые стали менее склонны к закалке, чем хромомолибденованадиевые.

Титан и его сплавы. Титан и его сплавы в настоящее время широко используются в специальных отраслях техники. Температура плавления титана 1680°С, плотность 4,5 г/см 3 . Титан имеет низкотемпературную α-фазу и высокотемпературную β-фазу.

Титан имеет высокое химическое сродство к кислороду, азоту и водороду: интенсивное насыщение его водородом начинается уже при температуре 250°С, кислородом - при 400°С и азотом - при 600°С. С повышением температуры активность титана резко возрастает. Скорость взаимодействия титана с кислородом в 50 раз выше, чем с азотом. Кислород и азот легко растворяются как в α-фазе, так и в β-фазе титана и являются сильными стабилизаторами α-фазы. Титан является единственным элементом, способным гореть в азоте. Водород стабилизирует β-фазу титана и образует с титаном твердые растворы и гидрид TiH 2 .

При охлаждении титана ниже 100- 150°С происходит выпадение гидрида (γ-фазы), что является причиной образования холодных трещин при сварке. При медленном охлаждении γ-фаза выделяется в виде тонких пластинок, а при закалке - в виде высокодисперсных частиц.

Азот и кислород резко повышают прочность титана и снижают его пластичность. Водород в титане влияет главным образом на его склонность к разрушению. Одним из наиболее важных свойств титана является его высокая коррозионная стойкость во многих агрессивных средах. Титан обладает высокой прочностью при нормальной и повышенной температурах.

Основными трудностями при сварке титана являются:

высокая его активность по отношению к кислороду, азоту и водороду как в расплавленном, так и в твердом состоянии;

образование хрупкой α-фазы при охлаждении;

высокая склонность к росту зерна β-фазы и перегреву.

Для получения качественного сварного соединения титана в нем ограничивают содержание азота, кислорода, водорода и углерода; с этой целью при сварке защищают металл шва и околошовной зоны инертными газами. Для защиты шва и околошовной зоны от воздуха применяют горелки с козырьком. Корень шва защищают плотным поджатием кромок свариваемых деталей к медной или стальной подкладке и подачей инертного газа в подкладку, изготовленную из пористого материала.

Механические свойства и структуру металла шва и околошовной зоны можно регулировать выбором наиболее рациональных режимов и технологии сварки, а также последующей термической обработкой. Аргонодуговую сварку титана в инертных газах выполняют в среде аргона высшего и 1-го сортов постоянным током прямой полярности. При сварке сосудов или труб инертный газ подводят внутрь изделия. Для сварки деталей из титана применяют герметичные камеры, заполненные инертным газом.

Вопросы для самопроверки

1. Какими способами можно сваривать медь?

2. Как влияют окись и закись меди на ее свариваемость?

3. В чем заключаются трудности сварки алюминия, никеля, титана?

4. Каковы причины появления пор при сварке меди, алюминия и титана?

Loading...Loading...