Основные элементы электрических схем. Как научиться читать и составлять электрические схемы

Чтобы читать электрические схемы, необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области, с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Расчленение схем на простые цепи

Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых - определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно "лишние" условия, и оценить их последствия.

Для решения этих вопросов пользуются несколькими приемами.

Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях. Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, например в цепях трансформаторов тока, контактов нет.

При чтении схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.

Реальность схемных решений

Наладчики хорошо знают, что не всегда могут быть осуществлены на деле схемные решения, хотя они не содержат явных ошибок. Иными словами, проектные электрические схемы не всегда реальны . Поэтому одна из задач чтения электрических схем состоит в том, чтобы проверить, могут ли быть выполнены заданные условия.

Нереальность схемных решений обычно имеет в основном следующие причины:

    не хватает энергии для срабатывания аппарата,

    в схему проникает "лишняя" энергия, вызывающая непредвиденное срабатывание пли препятствующая своевременному отпусканию электрического аппарата,

    не хватает времени для совершения заданных действий,

    аппаратом задана уставка, которая не может быть достигнута,

    совместно применены аппараты, резко отличающиеся по свойствам,

    не учтены коммутационная способность, уровень изоляции аппаратов и проводки, не погашены коммутационные перенапряжения,

    не учтены условия, в которых электроустановка будет эксплуатироваться,

    при проектировании электроустановки за основу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, например, в результате кратковременного перерыва питания.

Порядок чтения электрических схем и чертежей

Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.

Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.

Если она не отражена па чертежах, то ее выясняют и записывают.

На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.

Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.

При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:

1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,

2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти на схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,

3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,

4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,

5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,

5) проверяют схему па отсутствие ложных цепей,

6) оценивают надежность электропитания и режим работы оборудования,

7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).

Сегодня я хочу еще раз коснуться такой интересной темы как чтение электрических схем.

Я уже рассказывал в одном из видеороликов на своем канале в Ютубе “как читать электрические схемы” на примере токарного станка (это видео смотрите в конце статьи), тогда я отвечал на вопрос одного из читателей у которого возникла трудность в понимании электрической схемы.

Эта тема оказалась для многих очень интересной и сейчас я вам хочу рассказать как “читается” электрическая принципиальная схема релейной защиты в энергетике.

Вернее рассказывать буду не я, а Дмитрий Василевский который профессионально занимается проектированием релейной защиты и автоматики. Кстати вот видеоканал Дмитрия на ютубе, заходите и подписывайтесь на новости, лично мне очень нравится как Дмитрий доходчиво и понятно доносит сложную информацию по релейной защите.

Дмитрий Василевский. Как работать с принципиальной схемой РЗА?

Принципиальные схемы комплектов РЗА – вторые по важности и сложности во всем проекте. Независимо от того, что вам нужно сделать – разработать принципиалку или проверь готовую, работа с ней требует определенной квалификации. Глядя, например, на схему РЗА трансформатора 110/10 кВ поначалу не знаешь за что хвататься. Да, что там трансформатор 110кВ, иногда хватает и ввода 10 кВ, чтобы стало “темно в глазах”

Как упростить работу с принципиальной схемой без ущерба качеству?
Дальше я расскажу о приемах, которые использую сам.

Едим слона по частям
Если смотреть всю схему сразу, то ничего хорошего, скорее всего, не получится – слишком много информации. Вы должны разделить схему на независимые участки и работать с каждым отдельно. Для схем РЗА с микропроцессорными терминалами таких участков можно условно выделить 10:
1. Поясняющая схема;
2. Измерительные цепи (цепи тока и напряжения);
3. Цепи привода выключателя;
4. Цепи оперативного тока (включая питание терминала);
5. Цепи сигнализации;
6. Выходные цепи (включая цепи ТС и резервные выходы);
7. Цепи АСУ;
8. Вспомогательные цепи (обогрев, освещение, розетки и т.д.);
9. Перечень элементов (может идти отдельно от принципиалки);
10. Таблицы или логические схемы для параметрирования (могут быть выделены в отдельную часть).

Преимущества:
1) Вы можете проверить полноту данных на схеме.
Не каждый комплект РЗА содержит все 10 разделов, но если какого-то раздела нет, то спросите себя – почему его нет? Если вы можете адекватно ответить на этот вопрос, то все в порядке, а если затрудняетесь – значит есть большая вероятность ошибки.
Пример:
Вопрос: почему в комплекте ТН 10 кВ нет цепей привода (п.3)?
Ответ: потому, что в ячейке ТН нет выключателя. Это вполне логично.
Еще пример:
Вопрос: почему в комплекте РЗА ввода 10 кВ отсутствует информация для параметрирования терминала РЗА (п.10)?
Ответ:… ответа нет. Значит это ошибка, особенно если терминал с гибкой логикой.
Ну и так далее. Так как мозг работает гораздо быстрее, чем вы читаете эти примеры, то на самом деле это не так нудно

2) Вы получаете понятную систему проверки схемы
Вместо интуитивных ощущений вы фактически имеете Чек-лист, в котором нужно пройти все пункты и везде поставить галочки.
Этот Чек-лист вы можете сохранить и передать другим людям. Например, исполнителю перед разработкой схем, чтобы уменьшить количество ошибок.
Системные знания гораздо ценнее, чем интуитивные.

“Не все цепи одинаково полезны”
В предыдущем разделе приведены 10 участков принципиальной схемы. Пока это просто список задач. Нужно расставить приоритеты их выполнения!

Вы должны понимать – цепей много, но есть несколько критических, которые определяют 80% работоспособности схемы. Их не так много – около 20% от общего числа. Если вам кажется это соотношение знакомым, то вам не кажется.
Это Принцип Парето – 20% усилий дают 80% результата.
Его влияние можно увидеть повсюду – не только в релейной защите. Сами проценты не важны и могут меняться в больших пределах. Например, не 20/80, а 10/90. Важно то, что мы не можем уделять одинаковые усилия и время всем участкам схемы. Результат будет плохой.
Особенно если времени мало! А при проектировании обычно так бывает всегда

Какие самые критические участки принципиальной схемы?
Я считаю, что следующие (для РЗА конкретного присоединения):
– Измерительные цепи (100% критически важны);
– Цепи привода выключателя (100% критически важны);
– Цепи оперативного тока (примерно 40% этих цепей критически важны – остальные вспомогательные)
– Выходные цепи (примерно 40% этих цепей критически важны – остальные вспомогательные);
– Таблицы или логические схемы для параметрирования (для МП РЗА примерно 30% функций являются критическими – остальные вспомогательные).
Если вы не знаете за что браться – беритесь за эти цепи и делайте их качественно. Это позволит избежать серьезных ошибок в проекте и, в будущем, больших аварий на объекте.
Это совет прежде всего начинающим проектировщикам. Сам таким был и “косячил” ужасно потому, что хватался за все подряд и обычно не за то, что нужно
Преимущества:
Эффективная работа в условиях дефицита времени и большого объема информации

P.S. Этот принцип не означает, что остальные цепи делать не нужно. Нужно конечно, но в последнюю очередь, после того как завершены все работы по критическим.

Находи ошибки до того, как увидишь схему
Мой бывший начальник как-то сказал, что “профессионализм – это умение предвидеть ошибки”. Хоть я тогда и не занимался релейной защитой, но слова его запомнил и применяю этот принцип и в своей нынешней работе.

Речь о том, что в каждом разделе схемы есть ошибки, которые допускаются чаще всего. Если ты знаешь эти “типовые ошибки”, то работа со схемой становится быстрой и простой.

Например, для токовых цепей комплекта РЗА самая частая ошибка – это нарушение полярности при подключении ТТ к терминалу. Ошибка эта настолько частая и массовая, что я даже решил снять видео о создании токовых цепей. Если будет интересно, вы можете найти первый ролик по ссылкеhttp://www.youtube.com/watch?v=9Cqyxg1bSy4
Остальные видео на том же канале.

Для цепей привода – это контакт взвода пружины (готовность к включению). Где-то он замкнут, где-то разомкнут. Тут стоит смотреть схему совместно с алгоритмами терминала.

Для цепей оперативного тока – это обычно ключи управления и выбора режима управления (МУ/ДУ). Тема вроде простая, но вариантов исполнения масса. Причем у разных эксплуатирующих организаций иногда мнения прямо противоположные. Также “веселой” темой являются цепи дуговой защиты, особенно на объектах с генерацией. Их я смотрю одними из первых.

Особенно эффективно использовать этот прием со вторым, т.е. искать “типовые ошибки” в критических цепях!

Это также очень полезно при оценке уровня проекта или проектировщика – быстро ищешь грубые ошибки. Если они есть – остальное можно не смотреть. Уже все понятно.

Третий метод, наверное, самый сложный из всех потому, что он подразумевает определенный уровень знаний и опыта. В институте, к сожалению, такому не учат. Первые же два можно начинать применять сразу же, без дополнительной подготовки.

Пример чтения схемы токарного станка:

Дмитрий Василевский: Как работать с принципиальной схемой РЗА.

Буду рад вашим комментариям, если есть какие то технические вопросы- то прошу задавать их на форуме, именно там я отвечаю на вопросы- .

Подписывайтесь на мой канал на Ютубе !

Свежее видео с канала “Советы электрика”:

Смотрите еще много видео по электрике для дома!

Узнайте первыми о новостях сайта!

Камнев В. Н. “Чтение схем и чертежей электроустановок” Высшая школа, 1990 год, 144 стр. (16,5 мб. djvu)

Электротехнические аппараты и электроустановки массово применяют во всех отраслях промышленности. Этим обусловлено использование стандартизированных правил изготовления, эксплуатации и ремонта, при этом используется техническая документация в виде инструкций, описаний, чертежей и схем. Чтение и правильное понимание которых обуславливает эффективности производственного процесса. Современная элементная электротехническая база изделий и аппаратов, а так же компоновка различаются и по принципу действия, и конструктивному исполнению, и зачастую имеют повышенную сложность исполнения.

Одним из основных условий для электротехнического персонала становится необходимость грамотного и профессионального подхода к работам в электроустановках, а одним из факторов такого подхода является умение чтения и понимания различных видов схем и чертежей электроустановок. Книга поможет вам изучить основы и базовые приемы работы со схемами и чертежами. В книге приведены основные сведения о схемах и чертежах электроустановок общего назначения, основные правила их выполнения в соответствии с ЕСКД. Во второе издание книги (1-е в 1986 г.) дополнено сведениями о условных обозначениях в схемах электронной техники, правилах выполнения чертежей жгутов, изделий с электрическими обмотками и печатных плат.

ISBN 5-06-001524-6

Глава первая. Общие сведения о чертежах и схемах электроустановок 6
I. Основные средства изображения устройств и установок 6
2. Виды и типы схем 6
3. Особенности схем электроустановок и общие требования к их выполнению 7

Глава вторая. Условные графические обозначения в электрических схемах 9
4. Построение условных графических обозначений 9
5. Примеры условных графических обозначений 13
6. Размеры условных графических обозначений 33

Глава третья. Условные буквенные и цифровые обозначения в электрических схемах 35
7. Обшие сведения 35
8. Позиционные обозначения 36
9. Обозначения целей 41

Глава четвертая. Принципиальные электрические схемы 49
10. Основные правила выполнения и чтения принципиальных схем 49
II. Схемы электрического освещения 54
12. Схемы распределения электроэнергии между потребителями 56
13. Схемы управления электрооборудованием силовых электрических цепей 61
14. Схемы устройств с электронной и микроэлектронной аппаратурой 71

Глава пятая. Схемы соединений н подключения 81
15. Основные правила выполнения схем соединений и подключении 81
16. Схемы соединений 83
17. Схемы подключения 91

Глава шестая. Планы расположения электрооборудования н прокладки электрических сетей 97

Глава седьмая. Чертежи электротехнических изделий и эаектроус таиовок 103
18. Конструкторская документация изделий, изготавливаемых с применением электромонтажа 103
19. Чертежи электрических жгутов 106
20. Чертежи изделий с электрическими обмотками и печатных плат 110
21. Установочные чертежи 117
22. Электротехнические чертежи распределительных устройств и подстанций на напряжение выше 1000 В 123
23. Чертежи линий электропередачи 131
24. Чертежи прокладки кабелей 137

Скачать книгу бесплатно 16,5 мб. djvu

Учимся читать принципиальные электрические схемы

О том, как читать принципиальные схемы я уже рассказывал в первой части . Теперь хотелось бы раскрыть данную тему более полно, чтобы даже у новичка в электронике не возникало вопросов. Итак, поехали. Начнём с электрических соединений.

Не секрет, что в схеме какая-либо радиодеталь, например микросхема может соединяться огромным количеством проводников с другими элементами схемы. Для того чтобы высвободить место на принципиальной схеме и убрать "повторяющиеся соединительные линии" их объединяют в своеобразный "виртуальный" жгут - обозначают групповую линию связи. На схемах групповая линия связи обозначается следующим образом.

Вот взгляните на пример.

Как видим, такая групповая линия имеет большую толщину, чем другие проводники в схеме.

Чтобы не запутаться, куда какие проводники идут, их нумеруют.

На рисунке я отметил соединительный провод под номером 8 . Он соединяет 30 вывод микросхемы DD2 и 8 контакт разъёма XP5. Кроме этого, обратите внимание, куда идёт 4 провод. У разъёма XP5 он соединяется не со 2 контактом разъёма, а с 1, поэтому и указан с правой стороны соединительного проводника. Ко 2-му же контакту разъёма XP5 подключается 5 проводник, который идёт от 33 вывода микросхемы DD2. Отмечу, что соединительные проводники под разными номерами электрически между собой не связаны, и на реальной печатной плате могут быть разнесены по разным частям платы.

Электронная начинка многих приборов состоит из блоков. А, следовательно, для их соединения применяются разъёмные соединения. Вот так на схемах обозначаются разъёмные соединения.

XP1 - это вилка (он же "Папа"), XS1 - это розетка (она же "Мама"). Всё вместе это "Папа-Мама" или разъём X1 (X2 ).

Также в электронных устройствах могут быть механически связанные элементы. Поясню, о чём идёт речь.

Например, есть переменные резисторы, в которые встроен выключатель. Об одном из таких я рассказывал в статье про переменные резисторы . Вот так они обозначаются на принципиальной схеме. Где SA1 - выключатель, а R1 - переменный резистор. Пунктирная линия указывает на механическую связь этих элементов.

Ранее такие переменные резисторы очень часто применялись в портативных радиоприёмниках. При повороте ручки регулятора громкости (нашего переменного резистора) сначала замыкались контакты встроенного выключателя. Таким образом, мы включали приёмник и сразу той же ручкой регулировали громкость. Отмечу, что электрического контакта переменный резистор и выключатель не имеют. Они лишь связаны механически.

Такая же ситуация обстоит и с электромагнитными реле . Сама обмотка реле и его контакты не имеют электрического соединения, но механически они связаны. Подаём ток на обмотку реле - контакты замыкаются или размыкаются.

Так как управляющая часть (обмотка реле) и исполнительная (контакты реле) могут быть разнесены на принципиальной схеме, то их связь обозначают пунктирной линией. Иногда пунктирную линию вообще не рисуют , а у контактов просто указывают принадлежность к реле (K1 .1) и номер контактной группы (К1.1 ) и (К1.2 ).

Ещё довольно наглядный пример - это регулятор громкости стереоусилителя. Для регулировки громкости требуется два переменных резистора. Но регулировать громкость в каждом канале по отдельности нецелесообразно. Поэтому применяются сдвоенные переменные резисторы, где два переменных резистора имеют один регулирующий вал. Вот пример из реальной схемы.


На рисунке я выделил красным две параллельные линии - именно они указывают на механическую связь этих резисторов, а именно на то, что у них один общий регулирующий вал. Возможно, вы уже заметили, что эти резисторы имеют особое позиционное обозначение R4.1 и R4.2 . Где R4 - это резистор и его порядковый номер в схеме, а 1 и 2 указывают на секции этого сдвоенного резистора.

Также механическая связь двух и более переменных резисторов может указываться пунктирной линией, а не двумя сплошными.

Отмечу, что электрически эти переменные резисторы не имеют контакта между собой. Их выводы могут быть соединены только в схеме.

Не секрет, что многие узлы радиоаппаратуры чувствительны к воздействию внешних или "соседствующих" электромагнитных полей. Особенно это актуально в приёмопередающей аппаратуре. Чтобы защитить такие узлы от воздействия нежелательных электромагнитных воздействий их помещают в экран, экранируют. Как правило, экран соединяют с общим проводом схемы. На схемах это отображается вот таким образом.

Здесь экранируется контур 1T1 , а сам экран изображается штрих-пунктирной линией, который соединён с общим проводом. Экранирующим материалом может быть алюминий, металлический корпус, фольга, медная пластина и т.д.

А вот таким образом обозначают экранированные линии связи. На рисунке в правом нижнем углу показана группа из трёх экранированных проводников.

Похожим образом обозначается и коаксиальный кабель. Вот взгляните на его обозначение.

В реальности экранированый провод (коаксиальный) представляет собой проводник в изоляции, который снаружи покрыт или обмотан экраном из проводящего материала. Это может быть медная оплётка или покрытие из фольги. Экран, как правило, соединяют с общим проводом и тем самым отводят электромагнитные помехи и наводки.

Повторяющиеся элементы.

Бывают нередкие случаи, когда в электронном устройстве применяются абсолютно одинаковые элементы и загромождать ими принципиальную схему нецелесообразно. Вот, взгляните на такой пример.

Здесь мы видим, что в схеме присутствуют одинаковые по номиналу и мощности резисторы R8 - R15. Всего 8 штук. Каждый из них соединяет соответствующий вывод микросхемы и четырёхразрядный семисегментный индикатор. Чтобы не указывать эти повторяющиеся резисторы на схеме их просто заменили жирными точками.

Ещё один пример. Схема кроссовера (фильтра) для акустической колонки. Обратите внимание на то, как вместо трёх одинаковых конденсаторов C1 - C3 на схеме указан лишь один конденсатор , а рядом отмечено количество этих конденсаторов. Как видно из схемы, данные конденсаторы необходимо соединить параллельно , чтобы получить общую ёмкость 3 мкФ.


Аналогично и с конденсаторами C6 - C15 (10 мкФ) и C16 - C18 (11,7 мкФ). Их необходимо соединить параллельно и установить на место обозначенных конденсаторов.

Следует отметить, что правила обозначения радиодеталей и элементов на схемах в зарубежной документации несколько иные. Но, человеку, получившему хотя бы базовые знания по данной теме разобраться в них будет гораздо проще.

Для того чтобы научиться читать электрические схемы, нужно, прежде всего, знать условные обозначения - то есть те символы, которые встречаются практически на любой схеме. Именно об этих символах мы, в первую очередь, и поговорим. Далее мы рассмотрим, что же еще, помимо знания этих обозначений, необходимо человеку для того, чтобы стать специалистом в области электротехники, а конкретно - понимание того, как применить знания по чтению электрических схем на практике.

Как читать электрические схемы - обозначения

Здесь я приведу вам основные обозначения, встречающиеся практически на любой электрической схеме.

  • Линиями на электрической схеме всегда обозначаются провода.
  • Точками обозначают точки соединения.
  • Если вам встретится маленький прямоугольник - это резистор.
  • Круг с крестиком внутри обозначает светодиод или лампочку. А вот круг с кругом внутри в подавляющем большинстве случаев обозначает электрический двигатель.
  • Если вы встретите разомкнутую линию с концом, отведенным в сторону, это место обозначения ключа.
  • И, наконец, П-образный прямоугольник будет означать, что в этом месте находится реле.

Теперь взгляните на любую электрическую схему - наверняка вы посмотрите на нее уже другими глазами. Рекомендую вам записать вышеуказанные обозначения с пояснениями в виде таблицы, чтобы, в случае чего, их легко было бы найти и объяснить. Ну, а теперь еще несколько советов, без которых не обойтись тому, кто хочет научиться читать электрические схемы, ведь помимо знания символов, нужно еще кое-что.

Как научиться читать электрические схемы

Конечно, далеко не все так просто. Существует немало специальных схем, где, даже зная все обозначения, для правильного их понимания нужно знать принцип работы того или иного устройства. Поэтому скачайте какой-нибудь толковый учебник по электротехнике и начинайте потихоньку осваивать азы этой непростой, но интереснейшей профессии.

Понять символы легко, но важнее всего - понять принцип работы этих схем, иначе они так и останутся для вас набором символов - пусть теперь даже и понятных. Кроме того, электрическая схема дает представление только о принципе работы устройства. Мало знать, как читать электрические схемы, ведь на деле, указанные элементы могут располагаться в различных частях устройства, поэтому нужно запастись немалыми знаниями в области электрики, электроники и электротехники. Только тогда вы сможете не только читать схемы, но и уметь применять это знание на практике. Впрочем, было бы желание, а опыт придет, так что уверен - при правильной мотивации, все у вас получится.

Loading...Loading...