Полевой транзистор общий исток. Полевые транзисторы

Среди множества полупроводниковых приборов следует отметить полевой транзистор, принцип работы которого основан на перемещающихся основных однотипных носителях заряда. Поток этих зарядов регулируется с помощью поперечного электрического поля. Источником поля является напряжение, приложенное к любому из электродов транзистора. Такой электрод получил дополнительное название затвора.

Поскольку перемещаются однотипные заряды, электроны или дырки, полевые транзисторы называются униполярными, в отличие от биполярных приборов. Они могут иметь управляющий р-п-переход или изолированный затвор. Основными параметрами устройств является входное и внутреннее (выходное) сопротивление, а также напряжение отсечки и прочие характеристики.

Полевые транзисторы с управляющим р-п-переходом

Данный прибор состоит из полупроводниковой пластины, на концах которой установлены электроды истока и стока. Именно при их участии происходит подключение устройства к управляемой сети. Соединение управляющей сети осуществляется с третьим электродом, выступающим в роли затвора. Поскольку у пластины и третьего электрода различные типы проводимости, то за счет этого и образуется р-п-переход.


С помощью источника питания, включенного во входную цепь, в области р-п-перехода создается обратное напряжение. Дополнительно к входной цепи производится подключение источника усиливаемых колебаний. Когда входное напряжение изменяется, то происходит изменение и обратного напряжения в районе р-п-перехода. В результате, происходит изменение п-канала, представляющего собой обедненный слой. То есть, фактически, изменяется поперечное сечение, через которое проходят основные носители заряда.

В зависимости от выполняемых функций, электроды прибора имеют следующие наименования:

  • Электрод исток: из него происходит вхождение в канал основных носителей зарядов.
  • Электрод сток: через него из канала происходит выход основных носителей зарядов.
  • Электрод затвор: регулирует поперечное сечение канала.

Сам канал может обладать одной из двух проводимостей. Проводимость полевых транзисторов бывает с «р» или «п» каналом. Напряжения смещения, которые подаются на эти электроды, имеют противоположную полярность.

Таким образом, принцип действия полевого транзистора очень похож на работу вакуумного триода. Триод имеет катод, анод и сетку, которые соответствуют истоку, стоку и затвору. Однако, конструкция полупроводникового прибора отличается в лучшую сторону и обладает большим набором функций.

Полевые транзисторы с изолированным затвором

Данная конструкция прибора отличается наличием изолирующего слоя, разделяющего затвор и канал. В качестве подложки используется полупроводниковый кристалл, имеющий высокое удельное сопротивление. В нем создаются области с проводимостью, противоположной подложке. В этих местах наносятся электроды стока и истока. Между ними, на поверхности кристалла наносится тонкий слой диэлектрического материала. В свою очередь, на этот слой производится нанесение третьего металлического электрода - затвора.


В структуру прибора входит металл, и полупроводник (МДП). Поэтому, данные устройства получили название МДП-транзисторов.

МДП-приборы имеют следующую классификацию:

  • С индуцированным каналом. В данной конструкции отсутствует проводящий канал между стоком и истоком. Поэтому, появление тока зависит от полярности стока и порогового напряжения на затворе в соответствии с истоком.
  • Со встроенным каналом. В этом приборе, при значении нулевого напряжения, под затвором происходит образование инверсионного слоя в виде канала, соединяющего сток и исток.

Таким образом, полевые транзисторы, имеют общий принцип работы, но отличается особенностями конструкции, что дает возможность их использования в самых разных областях.

Как работает полевой транзистор

Лекция 12. Полевые транзисторы. Классификация, принцип действия, основные параметры, схемы включения и режимы работы

Полевым транзистором называется полупроводниковый прибор, ток в котором создаётся основными носителями зарядов (только электронами или только дырками). Заряды перемещаются в области, которая называется канал . Электрод, через который ток втекает в транзистор, называется исток (И). Прошедшие через канал заряды выходят из него через электрод, который называется сток (С). Движением зарядов управляет электрод, который называется затвор (З).

Классификация . В зависимости от типа проводимости канала различают полевые транзисторы с каналом типа p и типа n , а в зависимости от способа выполнения затвора - с управляющим p-n переходом и с изолированным затвором. Условное графическое обозначение полевых транзисторов представлено на рис. 12.1. Стрелка показывает направление от слоя p к слою n .

Рис. 12.1. Условное графическое обозначение полевых транзисторов

В 1926 году был открыт полевой эффект и указан его недостаток - поверхностные волны в металле не позволяли проникать полю затвора в канал. Однако в 1952 году Уильям Шокли исследовал влияние управляющего p-n перехода на ток в канале, а в 1959 году Джон Аталла и Дэвон Канг из Bell Labs изготовили полевой транзистор с изолированным затвором по технологии МОП металлический (Al) затвор, изолятор оксид кремния (SiO 2) и канал-полупроводник (Si).

Система обозначений транзисторов была рассмотрена в лекции 6, и для полевых транзисторов, как и для биполярных, установлена отраслевым стандартом ОСТ 11336.919 - 81 и его последующими редакциями.

12.2. Устройство и принцип действия полевых транзисторов с управляющим p-n переходом

Рассмотрим физические процессы, происходящие в полевом транзисторе с управляющим p-n переходом и каналом n -типа, схематичное изображение которого представлено на рис. 12.2.

Рис. 12.2. Полевой транзистор с управляющим p-n переходом и каналом n -типа

Такая конструкция , в которой электроды расположены в одной плоскости, называется планарной. В исходном полупроводниковом материале методом диффузии создаётся легированная область n - канал. Затем на поверхности образуют сток, исток и затвор таким образом, что канал получается под затвором. Нижняя область исходного полупроводника - подложка - обычно соединяется с затвором. Исток подключают к общей точке источников питания, и напряжения на стоке и затворе измеряют относительно истока.


Изменение проводимости канала осуществляется изменением напряжения, прикладываемого к p-n переходам затвора и подложки. На рис. 12.3. представлены графики статических характеристик. Поскольку ток затвора не зависит от напряжения U ЗИ, входная характеристика отсутствует. Вместо неё применяется сток - затворная характеристика передачи . Выходная характеристика - это зависимость тока стока от напряжения на стоке при фиксированном напряжении на затворе .


Рис. 12.3. Статические характеристики полевого транзистора с управляющим p-n переходом

При U ЗИ = 0 толщина p-n - переходов затвора и подложки минимальна, канал «широкий» и проводимость его наибольшая. Под действием напряжения U СИ по каналу будет проходить ток, создаваемый основными носителями зарядов - электронами. На участке напряжений от 0 до U СИ.НАС ток будет нарастать и достигнет величины I С.нач - начального тока стока. Дальнейшее увеличение напряжения на стоке повышает напряжённость поля в запорном слое p-n переходов затвора и подложки, но не увеличивает ток стока. Когда напряжение на стоке достигнет U СИ.макс, может наступить электрический пробой по цепи сток - затвор, что показывает вертикальная линия роста тока на выходной характеристике.

Если отрицательное напряжение на затворе увеличивать, то, в соответствии с эффектом Эрли, толщина p-n - переходов затвора и подложки начнёт увеличиваться за счёт канала, сечение канала будет уменьшаться. Ток стока будет ограничен на меньшем уровне. Если и дальше увеличивать отрицательное напряжение на затворе, то, при некоторой его величине, называемой напряжением отсечки U ЗИотс, p-n переходы затвора и подложки сомкнутся и перекроют канал. Движение электронов в канале прекратится, ток стока будет равен нулю, и не будет зависеть от напряжения на стоке.

Следовательно , полевой транзистор с управляющим p-n -переходом до напряжения на стоке U СИ.НАС работает как регулируемое сопротивление, а на горизонтальных участках выходных характеристик может использоваться для усиления сигналов в режиме нагрузки.

Отличие полевых транзисторов с изолированным затвором состоит в том, что у них между металлическим затвором и полупроводником-каналом находится слой диэлектрика, в качестве которого используется слой двуокиси кремния SiO 2 , выращенный на поверхности кристалла кремния методом высокотемпературного окисления. Существуют два типа полевых транзисторов с изолированным затвором: с индуцированным каналом и с встроенным каналом.

Рассмотрим принцип действия полевого транзистора с индуцированным каналом n -типа, упрощённая конструкция которого представлена на рис. 12.4.

Основой транзистора является подложка - пластина Si с проводимостью р типа и с высоким удельным сопротивлением. На поверхности подложки методом диффузии создаются две сильно легированные области с проводимостью n типа, не соединённые между собой. К ним подключают металлические контакты, которые будут выводами стока и истока. Поверхность пластины покрывают слоем SiO 2 , на который между стоком и истоком наносят слой металла - затвор. Подложку обычно электрически соединяют с истоком.

При U ЗИ = 0, даже если между стоком и истоком приложено напряжение, транзистор закрыт, и в цепи стока протекает малый обратный ток p-n перехода между стоком и подложкой (рис. 12.4, а).

а) б)

Рис. 12.4. Конструкция и принцип действия полевого транзистора с индуцированным каналом:

а - при U ЗИ = 0; б - при U ЗИ > порогового значения

При подаче на затвор положительного относительно истока напряжения электрическое поле затвора через диэлектрик проникает на некоторую глубину в приконтактный слой полупроводника, выталкивая из него вглубь полупроводника основные носители зарядов (дырки) и притягивая электроны. При малых напряжениях U ЗИ под затвором возникает обеднённый основными носителями зарядов слой и область объёмного заряда, состоящего из ионизированных атомов примеси.

При дальнейшем увеличении положительного напряжения на затворе в поверхностном слое полупроводника происходит инверсия электропроводности (рис. 12.4, б). Образуется тонкий инверсный слой - канал - соединяющий сток с истоком. Напряжение на затворе, при котором образуется канал, называется пороговым напряжением.

Изменение напряжения на затворе вызывает изменение толщины и электропроводности канала, а, следовательно, и ток стока.

На рис. 12.5 представлены графики статических характеристик полевого транзистора с индуцированным каналом n -типа.


Рис. 12.5 . Графики статических характеристик полевого транзистора с индуцированным каналом n -типа

Режим работы полевого транзистора, при котором канал обогащается носителями зарядов при увеличении напряжения на затворе, называется режимом обогащения .

Отсутствие тока стока при нулевом напряжении на затворе, а также одинаковая полярность напряжений U ЗИ и U СИ у транзисторов с индуцированным каналом позволяет использовать их в экономичных цифровых микросхемах.

Рассмотрим теперь принцип действия полевого транзистора с встроенным каналом n -типа, упрощённая конструкция которого аналогична конструкции, представленной на рис. 12.4, б.

На стадии изготовления такого транзистора между областями стока и истока методом диффузии создаётся тонкий слаболегированный слой - канал - с таким же типом проводимости, как у стока и истока.

При U ЗИ = 0, когда между стоком и истоком приложено напряжение, транзистор открыт, и в цепи стока протекает ток. Отрицательное напряжение, приложенное к затвору относительно истока, будет выталкивать электроны из канала и втягивать в канал дырки из подложки. Канал обедняется основными носителями зарядов, его толщина и электропроводность уменьшаются. При некотором отрицательном напряжении на затворе, называемом напряжением отсечки, канал закрывается, ток стока становится равным нулю.

Увеличение положительного напряжения на затворе вызывает приток электронов из подложки в канал. Канал обогащается носителями, ток стока возрастает.

Таким образом, транзистор с встроенным каналом может работать как в режиме обеднения , так и в режиме обогащения .

На рис. 12.6 представлены графики статических характеристик полевого транзистора с встроенным каналом n -типа.


Рис. 12.6. Графики статических характеристик полевого транзистора с встроенным каналом n -типа

Полевым транзистором называется полупроводниковый усилительный прибор, сопротивление которого может изменяться под действием электрического поля. Изменение сопротивления достигается изменением удельного электрического сопротивления слоя полупроводника или изменением объема полупроводника, по которому проходит электрический ток.

В работе полевых транзисторов используются различные эффекты, такие, как изменение объема р -п -перехода при изменении действующего на нем запирающего напряжения; эффекты обеднения, обогащения носителями зарядов или инверсии типа проводимости в приповерхностном слое полупроводника. Полевые транзисторы иногда называют униполярными , потому что ток, протекающий через них, обусловлен носителями только одного знака. Полевые транзисторы еще называют канальными транзисторами, поскольку управляющее работой транзистора электрическое поле проникает в полупроводник относительно неглубоко, и все процессы протекают в тонком слое, называемом каналом .

Управляющая цепь полевого транзистора практически не потребляет ток и мощность. Это позволяет усиливать сигналы от источников, обладающих очень большим внутренним сопротивлением и малой мощностью. Кроме того, это дает возможность размещать сотни тысяч транзисторов на одном кристалле микросхемы.

Полевые транзисторы с управляющим р-п-переходом


Полевой транзистор может быть изготовлен в виде пластинки полупроводника (с п- или р -проводимостью), в одну из поверхностей которой вплавлен слой металла, называемый затвором , образующий плоский р-п -переход (рис. 5.1). К нижнему и верхнему торцам пластинки присоединяются выводы, называемые соответственно истоком и стоком. Если на затвор подается напряжение запирающей полярности (положительное на п -затвор и отрицательное на р -затвор), то в зависимости от его значения в канале (р-п -переходе) возникает обедненный носителями заряда слой, являющийся практически изолятором.

Изменяя напряжение на затворе от нуля до некоторого достаточно большого напряжения, называемого напряжением отсечки (напряжением запирания , или пороговым напряжением , см. рис. 5.6), можно так расширить объем полупроводника, занимаемого р-п -переходом, что он займет весь канал и перемещение носителей заряда между истоком и стоком станет невозможным. Транзистор полностью закроется (рис. 5.2).

В отличие от биполярных транзисторов, управляемых током, полевые транзисторы управляются напряжением, и, поскольку это напряжение приложено к управляющему р-п -переходу в обратной (запирающей) полярности, то ток в цепи управления практически не протекает (при напряжении 5 В ток управления не превышает 10 -10 А).

Полевые транзисторы с изолированным затвором

полевые транзисторы с индуцированным каналом

На рис. 5.3 показано устройство полевого транзистора с изолированным затвором, называемого МДП-транзистором . Это название обусловлено конструкцией: затвор выполнен из металла (М) и отделен тонким слоем диэлектрика (Д) от полупроводника (П), из которого сделан транзистор. Если транзистор изготовлен из кремния, то в качестве диэлектрика используется тонкая пленка оксида кремния. В этом случае на­звание изменяется на МОП-транзистор (металл-оксид-полупроводник).

Показанный на рис. 5.3 слева транзистор изготовлен на основе пластинки (подложки , или основания ) из кремния с р -проводимостью. На поверхности пластинки диффузионным способом получены две области с п -проводимостью (исток и сток), разделенные областью п -канала, имеющей преобладающую р -проводимость. Вследствие этого при подаче на транзистор напряжения ток между истоком и стоком протекать не будет, ибо переходы сток-основание и исток-основание образуют два встречно включенных р‑п‑ перехода, один из которых будет закрыт при любой полярности приложенного напряжения.

Однако, если на поверхностный слой р -полупроводника подействовать достаточно сильным электрическим полем, приложив между затвором и основанием напряжение положительной полярности, то между истоком и стоком начнет протекать ток. Это объясняется тем, что из приповерхностного слоя полупроводника, расположенного под затвором, электрическим полем будут оттесняться дырки и собираться электроны, образуя канал (с п -проводимостью, показанный на рис. 5.3 пунктирной линией), вследствие чего р‑п‑ переходы исток-канал и канал-исток перестанут существовать. Проводимость п‑ канала будет тем больше, чем больше напряжение, приложенное между затвором и основанием.

Транзистор рассмотренной конструкции называется МДП-транзистором с индуцированным каналом.

Основание обычно соединяется с истоком, но иногда напряжение на него подается отдельно, и тогда основание играет роль дополнительного затвора.

Если основание выполнено из п -кремния, исток и сток образованы сильно легированными областями с р‑ проводимостями, а в качестве изолятора используется оксид кремния, то получается МОП-транзистор с индуцированным р‑каналом (с проводимостью р ) (рис. 5.3 справа).

полевые транзисторы со встроенным каналом

МОП-транзисторы могут быть выполнены со встроенным каналом. Например, на рис. 5.4 слева приведена схема устройства такого транзистора с п -каналом. Основание выполнено из р -кремния, а исток и сток имеют п -проводимость и получены диффузионным способом. Исток и сток соединены сравнительно тонким каналом с незначительной р‑ проводимостью.

Если основание сделано из п -кремния, а исток и сток - из р -кремния, то транзистор имеет встроенный р-канал (рис. 5.4 справа).

Работу п -канального МОП-транзистора можно пояснить так. Если на затвор подано отрицательное (относительно основания) напряжение, то электроны проводимости вытесняются из п -канала в основание, и проводимость канала уменьшается, вплоть до полного обеднения и запирания канала.

При подаче на затвор положительного напряжения п -канал обогащается электронами, и проводимость его увеличивается (рис.5.6).

Классификация и характеристики полевых транзисторов

Полевые транзисторы бывают обедненного и обогащенного типа. К первым относятся все транзисторы с р‑п -переходом и п -канальные МОП-транзисторы обедненного типа. МОП-транзисторы обогащенного типа бывают как п -канальными, так и р -канальными (рис. 5.5).

Транзисторы обогащенного и обедненного типа отличаются только значением так называемого порогового напряжения , получаемого экстраполяцией прямолинейного участка характеристики (рис. 5.6.).

Выходными характеристиками полевого транзистора называются зависимости тока стока от напряжения сток-исток для различных значений напряжения затвор-исток.

Полевой транзистор является очень хорошим прибором с точки зрения выходной проводимости - при постоянном напряжении затвор-исток ток стока почти не зависит от напряжения (за исключением области малых напряжений сток-исток). На рис. 5.7 показаны типичные зависимости i с от u си для ряда значений u зи.

В полупроводниковой электронике наряду с биполярными транзисторами находят применение транзисторы, управляемые электрическим полем , одной из положительных особенностей которых является большое входное сопротивление (составляет 1-10 МОм и более). Такие транзисторы получили название полевых (униполярных ).

Устройство и принцип действия

Полевыми транзисторами называют полупроводниковые приборы, в которых создание электрического тока обусловлено перемещением носителей заряда одного знака под действием продольного электрического поля , а управление выходным током основано на модуляции сопротивления полупроводникового материала поперечным электрическим полем .

Принцип работы полевых транзисторов может быть основан:

На зависимости сопротивления полупроводника от сечения его проводящей области (чем меньше сечение - тем меньше ток; реализован в полевых транзисторах с управляющим р-п- переходом);

На зависимости проводимости полупроводника от концентрации основных носителей (реализован в полевых транзисторах с изолированным затвором структуры металл-диэлектрик-полупроводник (МДП-транзисторы)).

Полевой транзистор с управляющим р-п- переходом (ПТУП) представляет собой тонкую полупроводниковую пластину с одним р-п -переходом и с невыпрямляющими контактами по краям. Электропроводность материала пластины может быть п -типа или р -типа. В качестве примера рассмотрим транзистор, у которого основная пластина состоит из полупроводника n -типа (рисунок 1.32).

Рисунок 1.32 - Структура полевого транзистора с управляющим р-п -переходом

Основными областями в структуре полевого транзистора с управляющим р-п- переходомявляются:

Область истока - область, от которой начинают перемещение носители зарядов;

Область стока - область, к которой перемещаются носители;

Область затвора - область, с помощью которой осуществляется управление потоком носителей;

Область канала - область, через которую перемещаются носители.

Выводы от соответствующих областей транзистора имеют аналогичные названия: исток (И), сток (С) и затвор (3) (рисунок 1.32).

На рисунке 1.33 показаны условные графические обозначения полевых транзисторов с управляющим р-п- переходом: с каналом п -типа (рисунок 1.33, а ) и каналом р -типа (рисунок 1.33, б ).



а б

Рисунок 1.33 - УГО полевых транзисторов с управляющим р-п -переходом

Рассмотрим принцип функционирования ПТУП. Источники напряжения подключают к транзистору таким образом, чтобы между электродами стока и истока протекал электрический ток, а напряжение, приложенное к затвору, смещало электронно-дырочный переход в обратном направлении .


На рисунке 1.34 показан способ подключения источников напряжения к выводам ПТУП с каналом п -типа.

Рисунок 1.34 - Подключение источников напряжения к выводам ПТУП

Под действием напряжения источника Е СИ электроны будут перемещаться от истока к стоку, обеспечивая во внешней цепи ток стока I C .

Концентрации носителей зарядов в полупроводниковом материале канала и затвора выбраны таким образом, что при подаче обратносмещающего напряжения между затвором и истоком р-п -переход будет расширяться в область канала. Это приводит к уменьшению площади поперечного сечения проводящей части канала и, следовательно, к уменьшению тока стока I C .

Сопротивление области, расположенной под электрическим переходом, в общем случае зависит от напряжения на затворе . Это обусловлено тем, что размеры перехода увеличиваются с повышением приложенного к нему обратного напряжения, а увеличение области, обедненной носителями заряда, приводит к повышению электрического сопротивления канала (и, соответственно, к уменьшению тока, протекающего в канале).

Таким образом, работа полевого транзистора с управляющим p-n-переходом основана на изменении сопротивления канала за счет изменения размеров области, обедненной основными носителями заряда, которое происходит под действием приложенного к затвору обратного напряжения .

Напряжение между затвором и истоком, при котором канал полностью перекрывается и ток стока достигает минимального значения (I C » 0), называют напряжением отсечки (U отс ) полевого транзистора.

В отличие от ПТУП, у которых затвор имеет электрический контакт с каналом, в полевых транзисторах с изолированным затвором (ПТИЗ) затвор представляет собой тонкую пленку металла, изолированного от полупроводника. В зависимости от вида изоляции различают МДП- и МОП-транзисторы (соответственно, металл - диэлектрик - полупроводник и металл - оксид - полупроводник, например двуокись кремния SiO 2).

В исходном состоянии канал ПТИЗ может быть обеднен носителями зарядов или обогащен ими. В зависимости от этого различают два типа полевых транзисторов с изолированным затвором: МДП-транзисторы со встроенным каналом (рисунок 1.35, а ) (канал создается при изготовлении) и МДП-транзисторы с индуцированным каналом (рисунок 1.35, б ) (канал возникает под действием напряжения, приложенного к управляющим электродам). В ПТИЗ имеется дополнительный вывод от кристалла, на котором выполнен прибор (рисунок 1.35), называемого подложкой.



а б

Рисунок 1.35 - Устройство полевых транзисторов с изолированным затвором

В ПТИЗ электроды стока и истока располагаются по обе стороны от затвора и имеют непосредственный контакт с полупроводниковым каналом.

Канал называется встроенным , если он изначально обогащен носителями заряда. В этом случае управляющее электрическое поле будет приводить к обеднению канала носителями зарядов. Если канал изначально обеднен носителями электрических зарядов, то он называется индуцированным . При этом управляющее электрическое поле (между затвором и истоком) будет обогащать канал носителями электрических зарядов (то есть, повышать его проводимость).

Проводимость канала может быть электронной или дырочной . Если канал имеет электронную проводимость, то он называется п -каналом. Каналы с дырочной проводимостью называются р -каналами. В результате этого различают четыре типа полевых транзисторов с изолированным затвором : с каналом п - либо р -типов, каждый из которых может иметь индуцированный или встроенный канал. Условные графические обозначения названных типов полевых транзисторов представлены на рисунке 1.36.

Управляющее напряжение в ПТИЗ можно подавать как между затвором и подложкой , так и независимо на подложку и затвор . Рассмотрим в качестве примера принцип управления током в полевых транзисторах, структуры которых показаны на рисунке 1.35.



Рисунок 1.36 - УГО полевых транзисторов с изолированным затвором

Если на затвор подать положительное напряжение, то под влиянием образующегося электрического поля у поверхности полупроводника (рисунок 1.35, б ) появляется канал п -типа за счет отталкивания дырок от поверхности в глубь полупроводника. В транзисторе со встроенным каналом (рисунок 1.35, а ) происходит расширение уже имеющегося канала при подаче положительного напряжения или сужение - при подаче отрицательного. Изменение управляющего напряжения меняет ширину канала и, соответственно, сопротивление и ток транзистора .

Существенным преимуществом ПТИЗ перед ПТУП является , достигающее значений 10 10 - 10 14 Ом (у транзисторов с управляющим р-п -переходом - 10 7 - 10 9 Ом).

Важным преимуществом полевых транзисторов перед биполярными является малое падение напряжения на них при коммутации слабых сигналов.

Кроме этого следует выделить такие достоинства, как:

- высокое входное сопротивление ;

- малые шумы ;

- простота изготовления ;

- отсутствие в открытом состоянии остаточного напряжения между истоком и стоком открытого транзистора .

Вольт-амперные характеристики и основные параметры полевых транзисторов

Из рассмотренного ранее следует, что всего существует шесть типов полевых транзисторов. Их типовые передаточные характеристики приведены на рисунке 1.37. Пользуясь этими характеристиками, можно установить полярность управляющего напряжения, направление тока в канале и диапазон изменения управляющего напряжения. Из всех приведенных разновидностей транзисторов в настоящее время не выпускаются только ПТИЗ со встроенным каналом р -типа.



Рисунок 1.37 - Передаточные характеристики полевых транзисторов

Рассмотрим некоторые особенности этих характеристик. Все характеристики полевых транзисторов с каналом п -типа расположены в верхней половине графика и, следовательно, имеют положительный ток, что соответствует положительному напряжению на стоке. Наоборот, все характеристики приборов с каналом р -типа расположены в нижней половине графика и, следовательно, имеют отрицательное значение тока и отрицательное напряжение на стоке. Характеристики ПТУП при нулевом напряжении на затворе имеют максимальное значение тока, которое называется начальным I С нач . При увеличении запирающего напряжения ток стока уменьшается и при напряжении отсечки U отс становится близким к нулю.

Характеристики ПТИЗ с индуцированным каналом при нулевом напряжении на затворе имеют нулевой ток. Появление тока стока в таких транзисторах происходит при напряжении на затворе больше порогового значения U пор . Увеличение напряжения на затворе приводит к увеличению тока стока.

Характеристики ПТИЗ со встроенным каналом при нулевом напряжении на затворе имеют начальное значение тока I С. нач . Такие транзисторы могут работать как в режиме обогащения, так и в режиме обеднения. При увеличении напряжения на затворе канал обогащается и ток стока растет, а при уменьшении напряжения на затворе канал обедняется и ток стока снижается.

На рисунке 1.38 приведены выходные вольт-амперные характеристики ПТУП с каналом n -типа. Характеристики других типов транзисторов имеют аналогичный вид, но отличаются напряжением на затворе и полярностью приложенных напряжений.



Рисунок 1.38 - Выходные ВАХ ПТУП

На ВАХ полевого транзистора можно выделить две области: линейную и насыщения .

В линейной области ВАХ вплоть до точки перегиба представляют собой прямые линии, наклон которых зависит от напряжения на затворе. В области насыщения вольт-амперные характеристики идут практически горизонтально, что позволяет говорить о независимости тока стока от напряжения на стоке. В этой области выходные характеристики полевых транзисторов всех типов сходны с характеристиками электровакуумных пентодов. Особенности этих характеристик обуславливают применение полевых транзисторов. В линейной области полевой транзистор используется как сопротивление , управляемое напряжением на затворе , а в области насыщения - как усилительный элемент .

Максимальное напряжение, прикладываемое между стоком и истоком полевого транзистора, для каждого типа транзисторов различно. Но в общем случае, как показано на рисунке 1.39, при превышении некоторого значения U СИ проб резко возрастает ток стока, что может привести к выходу из строя транзистора в результате пробоя.

Рисунок 1.39 - Семейство выходных ВАХ полевого транзистора

К основным параметрам полевых транзисторов относятся:

Крутизна стокозатворной характеристики

. (1.28)

Типовые значения: S = 0,1-500 мА/В;

Крутизна характеристики по подложке

. (1.29)

Типовые значения: S п = 0,1-1 мА/В;

Начальный ток стока I С нач - ток стока при нулевом напряжении U ЗИ .

У транзисторов с управляющим р -п -переходом I C нач = 0,2-600 мА, со встроенным каналом - I С нач = 0,1-100 мА, с индуцированным каналом - I С нач = 0,01-0,5 мкА;

Напряжение отсечки U ЗИ отс (типовые значения U ЗИ отс = 0,2-10 В);

Сопротивление сток - исток в открытом состоянии R СИ отк (типовые значения R СИ отк = 2-300 Ом);

Остаточный ток стока I С ост - ток стока при напряжении U ЗИ отс (I С ост = 0,001-10 мА);

Максимальная частота усиления f p - частота, на которой коэффициент усиления по мощности равен единице (типовые значения f p - десятки - сотни МГц).

Вне зависимости от принципа работы, полупроводниковый транзистор содержит в себе монокристалл из основного полупроводникового материала, чаще всего это - кремний, германий, арсенид галлия. В основной материал добавлены, легирующие добавки для формирования p-n перехода(переходов), металлические выводы.

Кристалл помещается в металлический, пластиковый или керамический корпус, для защиты от внешних воздействий. Однако, существуют также и бескорпусные транзисторы.

Принцип работы биполярного транзистора.

Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника в кристалле. В любом случае выводы называются - база, коллектор и эмиттер. Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора. Он имеет принципиально очень малую ширину. Носители заряда движутся от эмиттера через базу - к коллектору. Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого может являться разность напряжения между этими электродами.

Т.е. - для нормальной работы биполярного транзистора в качестве усилителя сигнала всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в прямом направлении. Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает так называемую - рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют режим - А. В этом режиме напряжение между коллектором и нагрузкой, примерно равно половине питающего напряжения - т. е выходное сопротивление транзистора и нагрузки примерно равны. Если подавать теперь на переход база - эмиттер сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер - коллектор будет изменяться, графически повторяя форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору протекающим. Причем амплитуда тока будет большей, нежели амплитуда входного сигнала - будет происходить усиление сигнала.

Если увеличивать напряжение смещения база - эмиттер дальше, это приведет к росту тока в этой цепи, и как результат - еще большему росту тока эмиттер - коллектор. В конце, концов ток перестает расти - транзистор переходит в полностью открытое состояние(насыщения). Если затем убрать напряжение смещения - транзистор закроется, ток эмиттер - коллектор уменьшится, почти исчезнет. Так транзистор может работать в качестве электронного ключа . Этот режим наиболее эффективен в отношении управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения минимальна. Соответственно малы потери тока и нагрев переходов транзистора.

Существует три вида подключения биполярного транзистора. С общим эмиттером (ОЭ) - осуществляется усиление как по току, так и по напряжению - наиболее часто применяемая схема.
Усилительные каскады построенные подобным образом, легче согласуются между собой, так как значения их входного и выходного сопротивления относительно близки, если сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).

С общим коллектором (ОК) осуществляется усиление только по току - применяется для согласования источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок. Например, в выходных каскадах усилителей и контроллеров.

С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом усиления. Например - в входных цепях радиоприемных устройств.

Принцип работы полевого транзистора.


Полевой транзистор, как и биполярный имеет три электрода. Они носят названия - сток, исток и затвор. Если на затворе отсутствует напряжение, а на сток подано положительное напряжение относительно истока, то между истоком и стоком через канал течет максимальный ток.

Т. е. - транзистор полностью открыт. Для того, что бы его изменить, на затвор подают отрицательное напряжение, относительно истока. Под действием электрического поля (отсюда и название транзистора) канал сужается, его сопротивление растет, а ток через него уменьшается. При определенном значении напряжения канал сужается до такой степени, что ток практически исчезает - транзистор закрывается.

На рисунке изображено устройство полевого транзистора с изолированным затвором(МДП).


Если на затвор этого прибора не подано положительное напряжение, то канал между истоком и стоком отсутствует и ток равен нулю. Транзистор полностью закрыт. Канал возникает при некотором минимальном напряжении на затворе(напряжение порога). Затем сопротивление канала уменьшается, до полного открывания транзистора.

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения: с общим истоком (ОИ) - аналог ОЭ биполярного транзистора; с общим стоком (ОС) - аналог ОК биполярного транзистора; с общим затвором (ОЗ) - аналог ОБ биполярного транзистора.

По рассеиваемой в виде тепла мощности различают:
маломощные транзисторы - до 100 мВт;
транзисторы средней мощности - от 0,1 до 1 Вт;
мощные транзисторы - больше 1 Вт.

Важные параметры биполярных транзисторов.

1. Коэффициент передачи тока(коэффициент усиления) - от 1 до 1000 при постоянном токе. С увеличением частоты постепенно снижается.
2. Максимальное напряжение между коллектором и эмиттером(при разомкнутой базе) У специальных высоковольтных транзисторов, достигает десятков тысяч вольт.
3.Предельная частота, до которой коэффициент передачи тока выше 1. До 100000 гц. у низкочастотных транзисторов, свыше 100000 гц. - у высокочастотных.
4.Напряжение насыщения эмиттер-коллектор - величина падения напряжения между этими электродами у полностью открытого транзистора.

Важные параметры полевых транзисторов.

Усилительные свойства полевого транзистора определяются отношением приращения тока стока к вызвавшему его приращению напряжения затвор - исток, т. е.

ΔI d /ΔU GS

Это отношение принято называть крутизной прибора, а по сути дела оно является передаточной проводимостью и измеряется в миллиамперах на вольт(мА /В).

Другие важнейшие параметры полевых транзисторов приведены ниже:
1. I Dmax - максимальный ток стока.

2.U DSmax - максимальное напряжение сток-исток.

3.U GSmax - максимальное напряжение затвор-исток.

4.Р Dmax - максимальна мощность, которая может выделяться на приборе.

5.t on - типовое время нарастания тока стока при идеально прямоугольной форме входного сигнала.

6.t off - типовое время спада тока стока при идеально прямоугольной форме входного сигнала.

7.R DS(on)max - максимальное значение сопротивления исток - сток в включенном(открытом) состоянии.


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

Loading...Loading...