Как работает мосфет. Мосфет - что это такое? Конструктивно-технологические особенности

Без всякого преувеличения можно сказать, что появившиеся не слишком давно транзисторы типа MOSFET и IGBT, составляют сегодня основу силовой преобразовательной техники. Более того, без использования этих типов транзисторов немыслима разработка сколько-нибудь надежного статического преобразователя, отвечающего современным требованиям. Поэтому данную главу, посвященную основной элементной базе силовой электроники, мы начнем с рассказа именно об этих электронных элементах.

Полевые транзисторы появились в силовой схемотехнике значительно позже своих старших собратьев - биполярных транзисторов. Тем не менее, сегодня они стремительно оттесняют «биполярники» на второй план, обоснованно стремясь занять лидирующее положение в классах силовой преобразовательной техники, работающих с напряжения мидо 300 В. Чем принципиально транзистор MOSFET отличается от биполярного транзистора? Полевой транзистор по принципу управления - не токовый, а потенциальный прибор. Для того, чтобы перевести полевой транзистор из открытого состояния в закрытое и наоборот, нужно приложить к затвору (относительно истока) определенное напряжение. При этом ток в цепи затвора протекает только в моменты коммутации, то есть очень незначительный промежуток времени: для поддержания открытого состояния этому транзистору ток не нужен - управление осуществляется электрическим полем.

Транзисторы типа MOSFET по сравнению с биполярными транзисторами имеют множество неоспоримых преимуществ, среди которых основными являются следующие:

Поскольку MOSFET управляется не током, а электрическим полем, это обстоятельство позволяет значительно упростить схему управления и снизить затрачиваемую на управление мощность;

В полевых транзисторах отсутствует так называемая инжекция неосновных носителей в базовую область, поэтому они могут переключаться с гораздо более высокой скоростью;

Поскольку полевые транзисторы термоустойчивы, то есть с ростом температуры увеличивается сопротивление их канала, это позволяет реализовывать параллельное соединение MOSFET для увеличения нагрузочной способности;

В полевых транзисторах отсутствует вторичный пробой, поэтому область их безопасной работы шире, чем у биполярных транзисторов.

Впрочем, и у транзисторов MOSFET имеются некоторые недостатки. Вкратце назовем их:

В открытом состоянии канал транзистора MOSFET представляет собой активное сопротивление (Л Лоп), которое невелико только у транзисторов с допустимым напряжением «сток-исток» (U dsmatx) не более 250…300 В, а далее, с повышением этого допустимого напряжения, наблюдается его значительный рост, что заставляет соединять приборы параллельно, ограничивать ток, приходящийся на один транзистор, то есть «недогружать» прибор;

Некоторые разработчики ошибочно считают этот диод специально встраиваемым защитным элементом, называя его быстродействующим диодом Шоттки. Действительно, графическое начертание уж

В справочной документации по полевым транзисторам MOSFET в символическом обозначении транзистора часто встречается символ диода, включенного параллельно цепи «сток-исток», как показано на рис. 2.1.1.


На рисунке эти емкости условно показаны постоянными, но в реальном приборе каждая емкость состоит из нескольких более мелких, с разным характером поведения. Кроме того, величина этих емкостей сильно зависит от напряжения между их «обкладками»: она велика при малом напряжении «сток-исток», и быстро уменьшается с его ростом. На рис. 2.4.1 показан характер изменения межэлектродных емкостей с ростом напряжения «сток-исток» для маломощного тран-


Рис. 2.1.4. Зависимость величины межэлектродных емкостей от величины напряжения «сток-исток»: а - для IRF740; б - для FB180SA10

зистора типа IRF740, а на рис. 2.1.4, б - для мощного транзистора типа FB180SAi0.

Чтобы гарантированно открыть транзистор, необходимо зарядить его входную емкостьдо напряжения 12… 15 В. Сделать этот процесс достаточно быстрым - задача непростая, поскольку быстрому заряду емкости будет мешать так называемый эффект Миллера. Производители транзисторов затрачивают на борьбу с влиянием эффекта Миллера достаточно много интеллектуальных сил и финансовых средств, так как чем сильнее этот эффект будет подавлен, тем выше окажется скорость переключения транзистора.

Наличие эффекта Миллера обуславливает существование емкости C gd , которая образует отрицательную обратную связь между входом и выходом транзистора. Сам прибор в этом случае нужно рассматривать как усилительный каскад, выходной сигнал которого снимается с нагрузки R H в цепи стока. В таком каскаде выходной сигнал будет инвертирован относительно входного сигнала. Обратная связь в виде конденсатора C gd настолько сильно уменьшает амплитуду входного

где Ky - коэффициент усиления каскада.

сигнала, что по отношению к нему входная емкость транзистора оказывается больше, чем она есть на самом деле:

Определить коэффициент усиления каскада на полевом транзисторе можно по известной простой формуле:

где S - крутизна транзистора (приводится в справочных данных).

Простой расчет красноречиво свидетельствует о том, насколько сильно эффект Миллера оказывает влияние на величину входной емкости. Пусть C^ = 35 пФ, C gd =6 пФ, S= 250 мА/В, R H = 200 Ом. Тогда величина емкости С их, рассчитанная с учетом формул (2.1.1) и (2.1.2), составит 341 пФ. Другими словами, эффект Миллера способен свести к нулевым очевидные преимущества скорости переключения полевых транзисторов. Но, к счастью, сегодня этот эффект значительно минимизирован в серийно выпускаемых транзисторах и не вызывает серьезных опасений.

А теперь поговорим о режиме переключения силовых приборов как об основном режиме их работы в составе преобразовательной техники. Учитывая это, нам просто необходимо рассмотреть специфику процессов, происходящих в транзисторах MOSFET при их работе в силовых схемах.

На рис. 2.1.6 показан типовой полевой транзистор, работающий в ключевом режиме.

Рис. 2.1.6. К расчету времени переключения транзистора MOSFET

Напряжение U g , прикладываемое к затвору транзистора VT от импульсного генератора, имеет вид, изображенный на рис. 2.1.7, а. В цепь затвора включен резистор с небольшим сопротивлением R g , который мы в дальнейшем будем называть затворным резистором. При подаче прямоугольного импульса от источника U g сначала происходит заряд емкости C gc (участок «1» на рис. 2.1.7, б). Но транзистор в это время закрыт - он начнет открываться только при достижении напряжения U gc некоторого значения, называемого пороговым напряжением (что видно из рис. 2.1.7, в. Величина порогового напряжения в справочной документации обозначается как U gs (thy Типичное значение порогового напряжения для полевых транзисторов составляет


Рис. 2.1.7. Временные диаграммы коммутационных процессов в транзисторах

Легко заметить, что имеет место временная задержка включения транзистора. Время, затрачиваемое на этот процесс, носит название времени задержки включения (turn-on delay time) и обозначается в технической документации как t dion) .

При достижении U gs порогового уровня «срабатывает» эффект Миллера, входная емкость резко увеличивается, что иллюстрируется участком «2» на рис. 2.1.7, 6, а значит, скорость открытия транзистора замедляется. «Медленный» участок будет длиться до тех пор, пока транзистор полностью не откроется, или, другими словами, пока сопротивление открытого р-п-перехода не достигнет значения Л Л(оп) . На протяжении времени открытия транзистора наблюдается падение напряжения U ds до минимально-возможной величины. Процесс открывания занимает время, называемое в технической документации временем нарастания (rise time) и обозначаемое как t r После того, как транзистор полностью откроется, обратная связь обрывается и входная емкость снова становится равной C gs (участок «3» на рис. 2.1.7, 6). В результате на затворе установится напряжение U^ равное напряжению генератора U g . На участке «4» транзистор находится в состоянии длительного статического насыщения.

Процесс выключения транзистора протекает в обратном порядке (участки «5», «6», «7» на рис. 2.1.7, б. На участке «5» происходит снижение напряжения U^ до порогового уровня, занимающее время t d (o (r) . Это время носит название времени задержки выключения (turn-off delay time). На участке «6» снова вступает в действие эффект Миллера, замедляющий процесс выключения, и напряжение «сток-исток» становится равным U n . Время, затрачиваемое на этот процесс, называется временем спада (fall time) и обозначается как t f .

Иногда в технической документации, особенно в отечественной, не приводятся отдельно время задержки включения, время нарастания, время спада и время задержки выключения, а даются суммарные параметры. Например, время включения t UKJl и время выключения / вык. В табл. 2.1.1 приводятся для сравнения временные параметры для некоторых распространенных типов транзисторов MOSFET.

Таблица 2. LI. Временные параметры некоторых транзисторов MOSFET


Итак, в результате процесса включения импульс тока стока задерживается относительно импульса управления на время / вкл, а выключение

транзистора растягивается на время / вык. Время коммутации напрямую связано с величиной тепловых потерь на полупроводниковом приборе: чем быстрее мы сможем переключать транзистор, тем меньше будет тепловых потерь на нем, тем лучшие показатели КПД схемы мы получим и тем меньшие габариты охлаждающих конструкций следует ожидать.

Заряд затвора определяется из следующей формулы:

где i g (t) - функция тока затвора.

Какой физический смысл выражения (2.1.3)? Интегрирование, как обычно, приводит к необходимости суммировать произведения тока затвора на протяжении коротких промежутков времени, в течение которых ток можно условно считать постоянным. В результате мы получаем так называемое «количество электричества», которое надо передать входной емкости транзистора, чтобы открыть (или закрыть) его. Мы можем сделать это быстро, тогда нам необходимо обеспечить большой зарядный ток, либо затянуть время открытия за счет уменьшения зарядного тока.

Зная величину заряда затвора (которую приличные фирмы-производители указывают в технической документации), легко вычислить время включения (выключения) транзистора MOSFET. Эти величины определяются так:

Но как определить величину заряда затвора для транзистора конкретного типа? Естественно, из технической документации, в которой обычно приводится значение, называемое «общим зарядом затвора» (total gate charge). Кроме этого, производители приводят также кривую заряда затвора (рис. 2.1.8).


Рис. 2.1.8. Типичные кривые заряда затвора транзисторов MOSFET: а - IRFP250; б IRL3103D1; в FBI80SA10

Рис. 2.1.9. Сравнительные характеристики заряда RC-цепочки и входной емкости затвора MOSFET

На рисунке 2.1.9 показаны характеристики, отражающие изменение тока затвора i g в процессе коммутации транзистора и сравнительное изменение тока заряда стандартной интегрирующей RC-цепочки.

В реальных схемах силовой преобразовательной техники затворами транзисторов управляют специальные устройства, называемые драйверами. Мы будем говорить о рекомендуемых для применения в составе силовой преобразовательной техники драйверах чуть позже, а сейчас обратим внимание читателя на то обстоятельство, что при разработке схемы управления транзисторами всегда важно определить мощность, которую нужно израсходовать на управление транзистором. Используя значение величины заряда затвора, нетрудно рассчитать среднюю величину мощности драйвера:

где / - частота коммутации.

Как показывает практика, обычно эта мощность составляет сотые доли процента от мощности силовой части схемы (при условии использования транзисторов MOSFET или IGBT, рассказ о которых - впереди).

Разработчику силовой преобразовательной техники очень часто приходится сталкиваться с так называемыми аварийными режимами работы, когда возникает короткое замыкание или нарушается электрический контакт (происходит разрыв цепи). В аварийных режимах, как правило, наблюдается резкое и неконтролируемое изменение токов и напряжений, в результате чего прибор может просто выйти из строя. Поэтому очень важно спроектировать узел управления преобразователем так, чтобы силовые элементы (которые, как правило, являются дорогостоящими изделиями) не были подвержены опасности выхода из строя в аварийном режиме. К одной из таких предпосылок потенциально-аварийных режимов можно отнести выбор слишком большого сопротивления затворного резистора. Покажем на примере, какими будут последствия в этом случае.

где (dUJdi) - предельная скорость изменения напряжения «стокисток» в единицу времени; / ком - время коммутации.

Резкое изменение напряжения «сток-исток» может возникнуть в разных ситуациях, например, при первоначальном включении питания силовой цепи самого ключевого транзистора, или при включении другого элемента схема, работающего в связке с данным транзистором. Покажем, насколько опасна для силового транзистора слишком высокая скорость коммутации. Для расчета примем типовое соотношение C gd /C gs = 1/4, dUJdt= 250 В/мкс, / ком = 1 мкс. Тогда t^=50 В, что составляет значительно более высокую величину по сравнению с безопасной зоной порогового напряжения, и, мало того, выше предельно-безопасного уровня напряжения на затворе. Следовательно, транзистор может, во-первых, самостоятельно открыться наведенным напряжением в тот момент, когда мы даже и не пытались подавать на него открывающий импульс управления, а во-вторых, он может просто выйти из строя из-за пробоя затвора высоким напряжением.

Полевой или FET (field-effect transistor) транзистор . Аналогичен биполярным транзисторам (BJT ). Транзисторы FET переключаются по напряжению, а не по току. Ниже приведена табличка обозначения электродов данных транзисторов, похожих по принципу работы.

К основным типам полевых транзисторов относятся:

- MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor)

- JFET (Junction Field-Effect Transistor)

- MESFET

- HEMT

- MODFET

Наиболее распространенными являются MOSFET и JFET

Транзистор с полевым эффектом представляет собой трехполюсное однополярное полупроводниковое устройство, которое имеет очень схожие характеристики с биполярными , т.е. высокую эффективность, мгновенную работу, надежность и дешевизну и может использоваться в большинстве применений электронных схем для замены эквивалентных биполярных транзисторов (BJT). Полевые транзисторы могут быть сделаны намного меньше, чем эквивалентный BJT-транзистор, а их низкое энергопотребление и рассеиваемая мощность делают их идеальными для использования в интегральных схемах, таких как CMOS-диапазон цифровых логических микросхем. Два основных типа конструкции биполярного транзистора, NPN и PNP , которые в основном описывают физическое расположение полупроводниковых материалов типа P и N-типа, из которых они изготовлены. Это относится и к полевым транзисторам, так как есть также две основные классификации полевого транзистора, называемого полевым транзистором N- канала и полевым транзистором Р-канала. Полевой сконструирован без PN-переходов в пределах основного пути прохождения тока между стоком и истоковыми оконечными устройствами, которые соответствуют функционально коллектору и эмиттеру биполярного транзистора. Путь тока между этими двумя выводами называется «каналом», который может быть выполнен из полупроводникового материала типа «P» или «N». Управление током, протекающим по этому каналу, достигается путем изменения напряжения, приложенного к затвору. Транзистор с полевым эффектом, является «однополярным» устройством, которое зависит только от проводимости электронов (N-канал) или дырок (P-канал). И меет одно главное преимущество перед BJT, так как их входной импеданс (Rin) очень высок (в тысячах Ом), в то время как у BJT сравнительно низок. Этот очень высокий входной импеданс делает их очень чувствительными к сигналам входного напряжения, но цена этой высокой чувствительности также означает, что они могут быть легко повреждены статическим электричеством.

Типичный полевик

Транзистор с полевым эффектом перехода (JFET)

Существует два основных типа полевого транзистора, полевого транзистора с полем перехода или JFET и транзистор с изолированным затвором IGFET , который более широко известен как MOSFET .

Биполярный транзистор соединен с использованием двух PN-переходов в основном канале переноса тока между эмиттером и коллектором. Транзистор с эффектом перехода (JUGFET или JFET) не имеет PN-переходов, но вместо этого имеет узкий кусок полупроводникового материала с высоким удельным сопротивлением, образующий «Канал» либо из кремния типа N, либо из кремния Р-типа, для того чтобы основные носители могли протекать через два омических соединения на обоих концах, которые обычно называются Drain и Source соответственно. Существуют две базовые конфигурации полевого транзистора с полем перехода, N-канальный JFET и P-канал JFET. Канал N-канального JFET легирован донорными примесями, что означает, что течение тока через канал отрицательно (отсюда термин N-канал) в виде электронов. Аналогично, канал Р-канала JFET легирован акцепторными примесями, что означает, что поток тока через канал положителен (отсюда и термин Р-канал) в форме дырок. N-канальные JFET имеют большую проводимость канала (меньшее сопротивление), чем их эквивалентные типы Р-каналов, поскольку электроны обладают большей подвижностью через проводник по сравнению с дырками. Это делает N-канальный JFET более эффективным проводником по сравнению с их аналогами P-каналов. Мы уже говорили ранее, что есть два электрода на обоих концах канала, называются сток и исток. Но внутри этого канала имеется третье электрическое соединение, которое называется затвор, материал типа P или N, образующий PN-переход с основным каналом.



Базовая конструкция для обеих конфигураций JFET.

Полупроводниковый «канал» представляет собой резистивный путь, через который напряжение V DS вызывает ток I D , и, таким образом, транзистор с эффектом переходного поля может проводить ток одинаково хорошо в любом направлении. Поскольку канал является резистивным по природе, градиент напряжения, таким образом, формируется по всей длине канала, причем это напряжение становится менее положительным, когда мы идем от клеммы Drain к клемме Source. В результате PN-соединение имеет высокое обратное смещение на клемме Drain и более низкое обратное смещение на клемме Source. Это смещение вызывает формирование «обедненного слоя» в канале и ширина которого увеличивается при смещении. Величина тока, протекающего по каналу между клеммой стоком и истоком, контролируется напряжением, подаваемым на вывод затвор, который является обратным смещением. В N-канальном JFET это напряжение затвора отрицательное, в то время как для JFET P-канала напряжение затвора положительное. Основное различие между JFET и BJT заключается в том, что когда соединение JFET обратно смещается, ток затвора практически равен нулю, тогда как базовый ток BJT всегда имеет некоторое значение, большее нуля.

Характеристические кривые выходного напряжения типичного транзистора FET.

Напряжение V GS, подаваемое на Gate, контролирует ток, протекающий между Drain и источниками. V GS относится к напряжению, приложенному между Gate и Source, в то время как V DS относится к напряжению, приложенному между Drain и Source.

Так как транзистор с эффектом «переходного поля» является устройством с управлением напряжением, «ток протекает в затвор» , то ток источника ( I S ), вытекающий из устройства, равен току стока, втекающему в него, и поэтому (I D = I S ) ,

Пример кривых характеристик, показанный выше, показывает четыре различные области работы JFET, и они приведены как:

  • Омическая область - Когда V GS = 0 истощающий слой канала очень мал и JFET действует как резистор, управляемый напряжением.
  • Область отсечки - это также известно как область пинч-офф - это напряжение затвора, V GS достаточно, чтобы заставить JFET действовать как разомкнутая цепь, поскольку сопротивление канала находится на максимуме.
  • Насыщенность или активная область - JFET становится хорошим проводником и управляется напряжением Gate - Source ( V GS ), в то время как напряжение источника стока (V DS ) оказывает незначительное влияние или не оказывает никакого эффекта.
  • Область пробоя - Напряжение между Drain и Source ( V DS ) достаточно высоко, чтобы вызвать разрушение резистивного канала JFET и прохождение неконтролируемого максимального тока.

Кривые характеристик для транзистора с полевым транзистором с P-каналом являются такими же, как и выше, за исключением того, что ток стока I D уменьшается с увеличением положительного напряжения на входе-выводе V GS .

Ток стока равен нулю, когда V GS = V P. Для нормальной работы V GS смещен, чтобы быть где-то между V P и 0. Тогда мы можем рассчитать ток стока, I D для любой заданной точки смещения в насыщающей или активной области следующим образом:

Режимы полевых транзисторов

Как и биполярный транзистор, полевой транзистор, являющийся трехконтактным устройством, может иметь три различных режима работы и, следовательно, может быть подключен в схеме в одной из следующих конфигураций.

Конфигурация с общим истоком (CS)

В конфигурации Common Source (аналогично общему эмиттеру), вход применяется к Gate, и его выход берется из Drain, как показано. Это наиболее распространенный режим работы полевого транзистора благодаря его высокому входному импедансу и хорошему усилению напряжения, и поэтому широко используются широко распространенные усилители с общим источником. Режим общего источника соединения FET обычно используется усилителями звуковой частоты, а также с высоким входным импедансом предусилителей и каскадов. Будучи усилительной схемой, выходной сигнал 180 ° «находится в фазе» с входом.

Конфигурация общий затвор (CG)

В конфигурации Common Gate (по аналогии с общей базой) вход применяется к источнику, и его выход берется из Drain с Gate, подключенным непосредственно к земле (0v), как показано. В этой конфигурации потеря сигнала высокой входной импеданс предыдущего соединения теряется, так как общий затвор имеет низкий входной импеданс, но высокий выходной импеданс. Этот тип конфигурации полевого транзистора может быть использован в высокочастотных цепях или в схемах согласования импеданса, поскольку низкий входной импеданс должен соответствовать высокому выходному импедансу. Выход «синфазный» с входом.

Конфигурация общего стока (CD)

В конфигурации Common Drain (аналогично общему коллектору) вход применяется к Gate, и его выход берется из Source. Конфигурация общего стока или «источник-последователь» имеет высокий входной импеданс, низкий выходной импеданс и почти единичное усиление напряжения, поэтому используется в буферных усилителях. Коэффициент усиления напряжения источника повторителя конфигурации меньше единицы, а выходной сигнал является «синфазным», 0 o с входным сигналом. Этот тип конфигурации называется «Common Drain», потому что на дренажном соединении нет сигнала, имеющееся напряжение + V DD просто обеспечивает смещение. Вывод синфазен со входом.

Усилитель JFET

Как и биполярный транзистор, JFET можно использовать для создания однокаскадных усилительных схем класса A с общим усилителем JFET и характеристиками, очень похожими на схему с общим эмиттером BJT. Основным преимуществом усилителей JFET перед усилителями BJT является их высокое входное сопротивление, которое контролируется резистивной сетью смещения затвора, сформированной R1 и R2, как показано.

Смещение на усилителе JFET



Эта схема усилителя общего источника (CS) смещается в режиме класса «A» с помощью сети делителя напряжения, образованной резисторами R1 и R2 . Напряжение на истоковом резисторе R S обычно устанавливается равным примерно четвертью V DD , (V DD / 4), но может быть любым разумным значением. Требуемое напряжение затвора может быть затем вычислено по этому значению R S. Так как ток затвора равен нулю, (I G = 0), мы можем установить требуемое напряжение покоя постоянного тока путем правильного выбора резисторов R1 и R2 . Управление током стока при отрицательном потенциале затвора делает транзистор с эффектом переходного поля полезным в качестве переключателя, и важно, чтобы напряжение затвора никогда не было положительным для N-канального JFET, поскольку ток канала будет протекать к Gate, а не в сток, приводящий к повреждению JFET. Принципы работы для J-канала P-канала такие же, как для N-канального JFET, за исключением того, что полярность напряжений должна быть изменена на противоположную.

В этой статье будет рассказано о таком элементе, как какими свойствами обладает, для чего используется в современной электронике, будет рассказано ниже. Вы можете встретить два типа силовых транзисторов - MOSFET и IGBT. Они применяются в импульсных преобразователях высокой мощности - инверторах, блоках питания. Стоит рассмотреть все особенности этих элементов.

Основные сведения

Нужно отметить, что IGBT и способны выдать очень большую мощность в нагрузку. При всем при этом устройство окажется очень маленьким по габаритам. Коэффициент полезного действия превышает у транзисторов значения в 95%. У мосфет и IGBT имеется одна общая черта - у них следствие этого - похожие параметры управления. Температурный коэффициент отрицательный у этих устройств, что позволяет делать такие транзисторы, которые будут устойчивы к воздействию короткого замыкания. На сегодняшний день мосфеты с нормированным значением времени перегрузки производятся почти всеми фирмами.

Драйверы для управления

Так как нет тока в цепи управления, в статическом режиме можно не использовать стандартные схемы. Разумнее применить специальный драйвер - интегральную схему. Многие фирмы выпускают устройства, которые позволяют управлять одиночными силовыми транзисторами, а также мостами и полумостами (трехфазными и двухфазными). Они могут выполнить различные вспомогательные функции - защитить от токовой перегрузки или КЗ, а также от большого падения напряжения в цепи управления мосфет. Что это за цепь, будет рассказано более детально ниже. Стоит заметить, что падение напряжения в цепи управления силовым транзистором - это очень опасное явление. Мощные мосфеты могут перейти в другой режим работы (линейный), вследствие чего выйдут из строя. Кристалл перегревается и транзистор сгорает.

Режим КЗ


Главная вспомогательная функция драйвера - это защита от токовых перегрузок. Необходимо внимательно посмотреть на работу силового транзистора в одном из режимов - короткого замыкания. Перегрузка по току может возникнуть по любой причине, но наиболее частые - замыкание в нагрузке либо же на корпус. Поэтому следует правильно осуществить управление мосфетами.

Перегрузка происходит из-за определенных особенностей схемы. Возможен переходный процесс либо возникновение тока обратного восстановления полупроводникового диода одного из плеч транзистора. Устранение таких перегрузок происходит схемотехническим методом. Используются цепи формирования траектории (снабберы), осуществляется подбор резистора в затворе, изолируется цепь управления от шины высокого тока и напряжения.

Как включается транзистор при КЗ в нагрузке

Ложные срабатывания


После того как переходный процесс завершится, к силовому транзистору будет приложено напряжение питания полностью. А это приведет к тому, что большая мощность будет рассеиваться в полупроводниковом кристалле. Отсюда можно сделать вывод о том, что режим короткого замыкания обязательно необходимо прерывать спустя определенный промежуток времени. Его должно хватить, чтобы исключить ложное срабатывание. Как правило, значение времени лежит в интервале 1...10 мкс. Характеристики транзистора должны быть такими, чтобы он без труда выдерживал эту перегрузку.

КЗ нагрузки при включенном транзисторе

Ток на коллекторе увеличивается, причем он может значительно превышать установившееся значение. Именно для этого режима предусмотрено не только то, что отключается канальный мосфет, но и заложена возможность ограничения напряжения.

От напряжения, приложенного к затвору транзистора, зависит напрямую установившийся ток короткого замыкания. Но при снижении напряжения на затворе полупроводникового элемента происходит довольно интересная картина. Напряжение насыщения увеличивается и, как следствие, увеличиваются потери проводимости. Устойчивость транзистора к короткому замыканию тесным образом связана с крутизной его характеристик.

Ток КЗ и коэффициент усиления


Чем выше КУ у мосфетов по току, тем ниже напряжение насыщения. Также они способны выдерживать перегрузки небольшое время. С другой же стороны, полупроводники, которые более устойчивы к воздействию короткого замыкания, обладают очень высоким напряжением насыщения. Потери у них тоже очень существенные.

Большее максимально допустимое значение тока короткого замыкания имеет пионер мосфет, нежели простой биполярный транзистор. Как правило, он в десять раз превышает номинальное значение тока (при условии, что на затворе допустимое напряжение). Большая часть производителей (европейских и азиатских) выпускает транзисторы, которые выдерживают такие нагрузки, причем не повреждаются.

Драйвер защиты от перегрузки верхнего плеча

Существуют различные методы отключения элементов при перегрузке. При помощи драйверов различных производителей можно реализовывать любые защитные функции, причем максимально эффективно. Если возникла перегрузка, необходимо снизить напряжение затвора. В этом случае распознавание аварийного режима увеличивается по времени.

Благодаря этому получается исключить ложные срабатывания схемы защиты. Вот как проверить мосфет: попробуйте изменить значение емкости конденсатора. Если изменится время реакции на КЗ, то вся схема работает правильно. В схеме используется несколько элементов, у которых определенные обязанности. Например, подключенный к выводу драйвера, “ERR”-конденсатор позволяет определить время анализа перегрузок.

Аварийный режим работы


На этот временной промежуток производится включение схемы стабилизации тока в цепи коллектора. Благодаря этому происходит снижение напряжения на затворе полупроводникового элемента. В том случае, если не происходит прекращение перегрузки, транзистор отключается спустя 10 мкс. Защита отключается после того, как будет снят со входа сигнал. Благодаря этому осуществляется триггерная схема защиты.

Когда она применяется, необходимо уделять свое внимание промежутку времени, через которое происходит повторное включение транзистора мосфет. Что это за включение и какие у него особенности? Обратите внимание на то, что это время должно быть больше, чем тепловая постоянная (временная) полупроводникового кристалла, на основе которого изготовлен транзистор.

Недостатки схемы включения


Но существуют схемы включения, которые снижают потери мощности. Напряжение насыщения в любом случае зависит от коллекторного тока. Мосфет (что это, рассмотрено в статье) данную зависимость демонстрирует, можно сказать, линейную по причине того, что от тока на стоке транзистора не зависит сопротивление канала (активного). Но у мощных IGBT транзисторов эта зависимость не линейна, но можно без труда выбрать напряжение, которое будет соответствовать необходимому току защиты.

Драйвер трехфазного моста


В таких схемах также применяется резистор для измерений значения тока. Ток защиты определяется при помощи делителя напряжения. Широкую популярность получили драйверы IR2130, которые обеспечивают стабильную работу схемы при напряжении до 600 Вольт. Схема включает в себя транзистор полевого типа, у которого открыт сток (он служит для индикации наличия неисправностей). Устанавливается мосфет на плате при помощи жестких перемычек в качественной изоляции по этим причинам. В нем имеется усилитель, который вырабатывает определенный контрольный и обратной связи сигналы. При помощи драйвера происходит формирование задержки по времени между включениями транзисторов нижнего и верхнего плеч, чтобы исключить появление сквозного тока.

Как правило, в зависимости от модификации, время составляет 0,2...2 мкс. В драйвере IR2130, который используется для реализации схемы защиты, отсутствует функция ограничения максимального значения напряжения на затворе в момент короткого замыкания. При разработке схемы трехфазного плеча необходимо помнить о том, что отключение моста происходит спустя 1 мкс после начала короткого замыкания. Следовательно, ток (в особенности при наличии активной нагрузки) превышает значение, которое было рассчитано. Чтобы сбросить режим защиты и вернуться к рабочему, следует произвести отключение питания драйвера либо же осуществить подачу на его входы запирающего напряжения.

Драйверы нижнего плеча


Чтобы произвести управление транзисторами мосфет нижнего плеча, существуют качественные микросхемы фирмы Motorola, например, МС33153. Этот драйвер особенный, так как его можно с успехом использовать для двух типов защиты (по напряжению и току). Также имеется функция, которая разделяет два режима - перегрузки и короткого замыкания. Имеется возможность подачи некоторого напряжения (отрицательного для управления). Это полезно для случаев, когда необходимо производить управление модулями с высокой мощностью и достаточно большим значением заряда затвора. Отключается режим защиты IGBT (это ближайшие аналоги мосфетов) после того, как напряжение питания падает ниже отметки в 11 Вольт.

Loading...Loading...