Где применяются полевые транзисторы. Полевые транзисторы со встроенным каналом

Ток насыщения I с0 в цепи стока транзистора, включённого по схеме с общим истоком, при затворе накоротко замкнутым с истоком (т. е. при U з.и =0) - характерен лишь для полевых транзисторов с управляющим p-n-переходом.

Ток стока в рабочей точке можно определить по следующей формуле :

I с = I с0 (1-U з.и /U отс) 2 (1)

где U отс - напряжение отсечки.

Уравнение (1) является приближенным для характеристики передачи любого полевого транзистора (особенно с малыми напряжениями отсечки).

Напряжение отсечки U отс - один из основных параметров, характеризующих полевой транзистор. При напряжении на затворе, численно равном напряжению отсечки, практически полностью перекрывается канал полевого транзистора, и ток стока при этом стремится к нулю.

Измерение истинного значения напряжения отсечки (при полном перекрытии канала) произвести довольно трудно, так как при этом приходится иметь дело с чрезвычайно малыми токами стока, к тому же зависящими от сопротивления изоляции. В справочных данных на полевые транзисторы всегда указывается, при каком значении тока стока произведены измерения напряжения отсечки. Так, например, для транзисторов КП102 напряжения U отс получены при токе стока 20 мкА, а у транзистора КП103 - при токе стока 10 мкА.

Крутизна проходной характеристики. Входное сопротивление полевых транзисторов со стороны управляющего электрода составляет 10 7 -10 9 Ом для транзисторов с p-n-переходом. Так как входные токи полевых транзисторов чрезвычайно малы, то управление током в выходной цепи осуществляется входным напряжением. Поэтому усилительные свойства полевого транзистора, как и электронных ламп, целесообразно характеризовать крутизной проходной характеристики.

Крутизна полевых транзисторов

Максимальное значение крутизны характеристики S макс достигается при U з.и =0. При этом численное значение S макс равно проводимости канала полевого транзистора при нулевых смещениях на его электродах.

Крутизна характеристики полевых транзисторов на 1-2 порядка меньше, чем у биполярных транзисторов, поэтому при малых сопротивлениях нагрузки коэффициент усиления каскада на полевом транзисторе меньше коэффициента усиления аналогичного каскада на биполярном транзисторе.

Выражение для крутизны характеристики в рабочей точке ПТ получим, используя (1):

где U з.и - напряжение затвор-исток, при котором вычисляется S;

(3)

Соотношение (3) позволяет по двум известным параметрам рассчитать третий.

Пробивное напряжение. Механизм пробоя полевого транзистора можно объяснить возникновением лавинного процесса в переходе затвор - канал. Обратное напряжение диода затвор - канал изменяется вдоль длины затвора, достигая максимального значения у стокового конца канала. Именно здесь происходит пробой полевого транзистора. Если выводы стока и истока поменять местами, то пробивное напряжение почти не изменится. Например, у транзистора КП102 пробой наступает при суммарном напряжении между затвором и стоком, равном 30 В. Это напряжение является минимальным; фактически напряжение пробоя составляет в среднем около 55 В, а у отдельных экземпляров достигает 120 В .

Пробой не приводит к выходу из строя ПТ с управляющим р-n-переходом, если при этом рассеиваемая мощность не превышает допустимой. После пробоя в нормальном рабочем режиме эти транзисторы восстанавливают свою работоспособность. Это свойство транзисторов с p-n-переходом даёт им известное преимущество перед МОП-транзисторами, у которых пробой однозначно приводит к выходу прибора из строя.

Однако необходимо оговориться, что и для ПТ с р-n-переходом пробой не всегда безвреден. Степень его влияния на параметры транзистора определяется значением и продолжительностью действия тока, протекающего при этом через затвор. Так, в результате пробоя может увеличиться ток утечки затвора в нормальном режиме .

Динамическое сопротивление канала r к определяется выражением

Это сопротивление при U с.и = 0 и произвольном смещении U з.и можно выразить через параметры транзистора :

(4)

При малом напряжении сток-исток вблизи начала координат ПТ ведёт себя как переменное омическое сопротивление, зависящее от напряжения на затворе. Это остаётся справедливым даже в случае изменения полярности напряжения стока (см. рис. 4); необходимо только, чтобы напряжение на затворе было больше, чем на стоке .

Минимальное значение сопротивления канала r к0 наблюдается при U з.и = 0: при увеличении обратного напряжения на затворе сопротивление канала нелинейно увеличивается (см. рис. 10). Значение r к0 определяется по стоковой характеристике транзистора как тангенс угла наклона касательной к кривой I с =f(U с) при U з.и = 0 в точке U с.и =0.

Для приближенных расчётов имеет место простое соотношение

Поверхность подложки между стоком и истоком покрывается пленкой диэлектрика, на которую сверху наносится металлический электрод - затвор .

По структуре используемых материалов -Металл-Диэлектрик-Полупроводник - полевые транзисторы с изолированным затвором также называют МДП транзисторами.

Полевые транзисторы в основном изготавливаются на основе кристалла кремния, при этом диэлектрическая пленка под электродом затвора создается окислением поверхности подложки. То есть получается следующая структура затвора-Металл-Окисел-Полупроводник - и транзисторы с изолированным затвором называют МОП транзисторами.

Наличие встроенного проводящего канала (как и для случая полевого транзистора с правляющим электронно-дырочным переходом рассматривается схема включения с общим истоком) приводит к тому, что при нулевом напряжении на затворе существует некоторый начальный ток стока (ток

).

Уменьшение напряжения на затворе приводит к снижению концентрации носителей заряда в канале и, соответственно, к снижению тока стока.

Увеличение напряжения на затворе вызывает повышение концентрации свободных носителей заряда в канале и рост тока стока.

Соответственно транзистор работает в режиме обеднения (

), либо в режиме обогащения (

).

Статические выходные характеристики и характеристики передачи полевого транзистора со встроенным -каналам приведены на рис. и рис. соответственно.



Полевые транзисторы с индуцированным каналом

При некотором значении напряжения на затворе, получившем название порогового, под затвором возникает слой с определенной концентрацией электронов (инверсный слой). Тем самым образуется канал между истоком и стоком и в цепи стока начинает протекать ток, обусловленный движением электронов.

Дальнейшее увеличение напряжения на затворе (

) приводит как к увеличению поперечного сечения канала, так и концентрации электронов в нем и, следовательно, тока стока.

Ток затвора очень мал, так как он определяется током утечки через диэлектрик.

Выходные статические характеристики транзистора с индуцированным каналам аналогичны характеристикам транзистора с управляющим электронно-дырочным переходом (рис.). Статические характеристики передачи полевых транзисторов с индуцированным каналом начинаются со значения

.


Общим для полевых транзисторов является их высокое входное сопротивление постоянному и переменному току, малый уровень шумов, нелинейность (квадратичность) характеристики передачи, практически полное разделение входной и выходной цепей, отсутствие эффекта накопления неосновных носителей.

Среди полевых транзисторов наиболее стабильны, имеют более низкий уровень шумов транзисторный с управляющим электронно-дырочным переходом.

При работе полевых транзисторов в режиме усиления используются участки выходных вольт-амперных характеристик в области насыщения. Полевые транзисторы характеризуются следующими малосигнальными параметрами:



Малосигнальные параметры полевых транзисторов связаны следующим соотношением:


Типичные значения коэффициента усиления полевых транзисторов составляют 50-200.

Система обозначений для полевых транзисторов установлена ОСТ 11336-919-81. В основу системы обозначений положен буквенно-цифровой код. Для полевых транзисторов второй элемент кода –букваП .

Полевым транзистором называется полупроводниковый прибор, в котором ток создаётся только основными носителями зарядов под действием продольного электрического поля, а управляющее этим током осуществляется поперечным электрическим полем, которое создаётся напряжением, приложенным к управляющему электроду.

Несколько определений:

    Вывод полевого транзистора, от которого истекают основные носители зарядов, называется истоком.

    Вывод полевого транзистора, к которому стекают основные носители зарядов, называется стоком.

    Вывод полевого транзистора, к которому прикладывается управляющее напряжение, создающее поперечное электрическое поле называется затвором.

    Участок полупроводника, по которому движутся основные носители зарядов, между p-n переходом, называется каналом полевого транзистора.

Поэтому полевые транзисторы подразделяются на транзисторы с каналом p-типа или n-типа.

Принцип действия рассмотрим на примере транзистора с каналом n-типа.

1) Uзи = 0; Ic1 = max;

2) |Uзи| > 0; Ic2 < Ic1

3) |Uзи| >> 0; Ic3 = 0

На затвор всегда подаётся такое напряжение, чтобы переходы закрывались. Напряжение между стоком и истоком создаёт продольное электрическое поле, за счёт которого через канал движутся основные носители зарядов, создавая ток стока.

1) При отсутствии напряжения на затворе p-n переходы закрыты собственным внутренним полем, ширина их минимальна, а ширина канала максимальна и ток стока будет максимальным.

2) При увеличении запирающего напряжения на затворе ширина p-n переходов увеличивается, а ширина канала и ток стока уменьшаются.

3) При достаточно больших напряжениях на затворе ширина p-n переходов может увеличиться настолько, что они сольются, ток стока станет равным нулю.

Напряжение на затворе, при котором ток стока равен нулю, называется напряжением отсечки.

Вывод: полевой транзистор представляет собой управляемый полупроводниковый прибор, так как, изменяя напряжение на затворе, можно уменьшать ток стока и поэтому принято говорить, что полевые транзисторы с управляющими p-n переходами работают только в режиме обеднения канала.

    Чем объяснить высокое входное сопротивление полевого транзистора?

Т.к. управление полевым транзистором осуществляется электрическим полем, то в управляющем электроде практически нет тока, за исключением тока утечки. Поэтому полевые транзисторы имеют высокое входное сопротивление, порядка 10 14 Ом.

    От чего зависит ток стока полевого транзистора?

Зависит от подаваемых напряжений U си иU зи.

    Схемы включения полевых транзисторов.

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.

    В чем отличие полевого транзистора от биполярного?

В полевом транзисторе управление током осуществляется электрическим полем, создаваемым приложенным напряжением, а не с помощью тока базы. Поэтому в управляющем электроде практически нет тока, за исключением токов утечки.

    Статический режим включения транзистора. Статические характеристики полевых транзисторов.

К основным характеристикам относятся:

    Стокозатворная характеристика (рис. а) – это зависимость тока стока (Ic) от напряжения на затворе (Uси) для транзисторов с каналом n-типа.

    Стоковая характеристика (рис. б) – это зависимость Ic от Uси при постоянном напряжении на затворе Ic = f (Uси) при Uзи = Const.

Основные параметры:

    Напряжение отсечки.

    Крутизна стокозатворной характеристики. Она показывает, на сколько миллиампер изменится ток стока при изменении напряжения на затворе на 1 В.

    Внутреннее сопротивление (или выходное) полевого транзистора

    Входное сопротивление

    Поясните влияние на ток стока напряжений U зи и U си .

Влияние подводимых напряжений в транзисторе в управляемом иллюстрируется на рисунке:


Три основных рабочих режима транзистора.

В различных видах полевых транзисторов и при различных внешних напряжениях затвор может оказывать два вида воздействий на канал: в первом случае (например, в полевых транзисторах с управляющим p-n-переходом при напряжениях на электродах, соответствующих рис. 2-1.5) он препятствует протеканию тока через канал, уменьшая число носителей зарядов, проходящих через него (такой режим называют режимом обеднения канала ), во втором случае (например, в МДП-транзисторах с индуцированным каналом, включенных в соответствии с рис. 2-1.7) затвор, наоборот, стимулирует протекание тока через канал, увеличивая число носителей зарядов в потоке (режим обогащения канала ). Часто просто говорят орежиме обеднения ирежиме обогащения . Заметим, что МДП-транзисторы с индуцированным каналом могут находиться в активном режиме только в случае режима обогащения канала, а для МДП-транзисторов со встроенным каналом это может быть и режим обогащения, и режим обеднения. В полевых транзисторах с управляющим p-n-переходом попытка приложить прямое смещение на этот переход вызывает его открытие и протекание существенного тока в цепи затвора. Реальные процессы в транзисторе в этом случае сильно зависят от его конструкции, практически никогда не документируются и трудно предсказуемы. Поэтому говорить о режиме обогащения для полевых транзисторов с управляющим переходом не принято да и просто бессмысленно.

Режим насыщения - характеризует состояние не всего транзистора в целом, как это было для биполярных приборов, а только токопроводящего канала между истоком и стоком. Данный режим соответствует насыщению канала основными носителями зарядов. Такое явление какнасыщение является одним из важнейших физических свойств полупроводников. Оказывается, что при приложении внешнего напряжения к полупроводниковому каналу, ток в нем линейно зависит от этого напряжения лишь до определенного предела (напряжение насыщения ), а по достижении этого предела стабилизируется и остается практически неизменным вплоть до пробоя структуры. В приложении к полевым транзисторам это означает, что при превышении напряжением сток-исток некоторого порогового уровня оно перестает влиять на ток в цепи. Если для биполярных транзисторов режим насыщения означал полную потерю усилительных свойств, то для полевых это не так. Здесь наоборот, насыщение канала приводит к повышению коэффициента усиления и уменьшению нелинейных искажений. До достижения напряжением сток-исток уровня насыщения ток через канал линейно увеличивается с ростом напряжения (т.е. ведет себя так же, как и в обычном резисторе). Автору неизвестно какого-либо устоявшегося названия для такого состояния полевого транзистора (когда ток через канал идет, но канал ненасыщен), будем называть егорежимом ненасыщенного канала (он находит применение в аналоговых ключах на полевых транзисторах). Режим насыщения канала обычно является нормальным при включении полевого транзистора в усилительные цепи, поэтому в дальнейшем при рассмотрении работы транзисторов в схемах мы не будем делать особого акцента на этом, подразумевая, что между стоком и истоком транзистора присутствует напряжение, достаточное для насыщения канала.

    Чем характеризуется ключевой режим работы транзистора?

Ключевым называют такой режим работы транзистора, при котором он может быть либо полностью открыт, либо полностью закрыт, а промежуточное состояние, при котором компонент частично открыт, в идеале отсутствует. Мощность, которая выделяется в транзисторе, в статическом режиме равна произведению тока, протекающего через выводы сток-исток, и напряжения, приложенного между этими выводами.

В идеальном случае, когда транзистор открыт, т.е. в режиме насыщения, его сопротивление межу выводами сток-исток стремится к нулю. Мощность потерь в открытом состоянии представляет произведение равного нулю напряжения на определённую величину тока. Таким образом, рассеиваемая мощность равна нулю.

В идеале, когда транзистор закрыт, т.е. в режиме отсечки, его сопротивление между выводами сток-исток стремится к бесконечности. Мощность потерь в закрытом состоянии есть произведение определённой величины напряжения на равное нулю значение тока. Следовательно, мощность потерь равна нулю.

Выходит, что в ключевом режиме, в идеальном случае, мощность потерь транзистора равна нулю.

    Что называют усилительным каскадом?

Соединение нескольких усилителей, предназначенное для увеличения параметров электрического сигнала. Подразделяют на каскады предварительного усиления и выходные каскады. Первые предназначены для повышения уровня сигнала по напряжению, а выходные каскады – для получения требуемых тока или мощности сигнала.

Полупроводниковые приборы, работа которых основана на модуляции сопротивления полупроводникового материала поперечным электрическим полем, называются полевыми транзисторами . У них в создании электрического тока участвуют носители заряда только одного типа (электроны или дырки).

Полевые транзисторы бывают двух видов:

С управляющим p-n-переходом;

Со структурой металл-диэлектрик-полупроводник (МДП)

Транзистор с управляющим p-n-переходом представляет собой пластину (участок) из полупроводникового материала с электропроводностью p- либо n-типа, к торцам которой подсоединены электроды - сток и исток . Вдоль пластины выполнен электрический переход (p-n-переход или барьер Шоттки), от которого выведен электрод - затвор .

Внешние напряжения прикладываются так, что между электродами стока и истока протекает электрический ток, а напряжение, приложенное к затвору, смещает электрический переход в обратном направлении. Сопротивление области, расположенной под электрическим переходом, которая называется каналом , зависит от напряжения на затворе. Это обусловлено тем, что размеры перехода увеличиваются с повышением приложенного к нему обратного напряжения, а увеличение области, обедненной носителями заряда, приводит к повышению электрического сопротивления канала.

Таким образом, работа полевого транзистора с управляющим p-n-переходом основана на изменении сопротивления канала за счет изменения размеров области, обедненной основными носителями заряда, которое происходит под действием приложенного к затвору обратного напряжения. Основные носители заряда в канале начинают движение от истока и движутся к стоку. При подаче на затвор обратного напряжения канал может быть почти полностью перекрыт и тогда сопротивление между истоком и стоком очень высокое (десятки мегаом), ток Ic→0, а такое напряжение называют напряжением отсечки полевого транзистора UЗИ отс.

Ширина p-n-перехода зависит также от величины тока, протекающего через канал. Пусть UСИ > 0, тогда ток IC, протекающий через транзистор, создает падение напряжения, которое окажется запирающим для перехода затвор-канал. Это приводит к увеличению ширины p-n-перехода, т.е. уменьшению сечения канала и его проводимости. При этом ширины p-n-перехода увеличивается по мере приближения к области стока, где будет наибольшее падение напряжения, вызванное током IC на сопротивлении канала RСИ. У края около истока действует напряжение UЗИ, а у края около стока |UЗИ |+UСИ. При малых значениях напряжения UCИ и малом IC транзистор ведет себя как линейное сопротивление: увеличение UCИ приводит к линейному возрастанию IC и наоборот. По мере роста UCИ характеристика UЗИ = f(UCИ) становится нелинейной, что обусловлено сужением канала у стокового конца. При определенном значении тока наступает режим насыщения. Его возникновение связано с тем, что при большом напряжении UCИ канал стока стягивается в узкую горловину, наступает динамическое равновесие - при увеличении UCИ рост тока IC приводит к дальнейшему сужению канала и соответствующему уменьшению тока IC. Напряжение насыщенно зависит от UЗИ.



При дальнейшем увеличении напряжения UCИ у стокового конца наблюдается пробой p-n-перехода. Область ОА называют крутой областью характеристики, АВ - пологой или областью насыщения.

В усилительных каскадах транзистор работает на пологом участке характеристики. За точкой. В возникает пробой транзистора. Входная характеристика полевого транзистора с управляющим p-n-переходом представляет собой обратную ветвь вольтамперной характеристики p-n-перехода. Хотя ток затвора изменяется при изменении напряжения UCИ и достигает максимума при коротком замыкании выводов истока и стока (ток утечки затвора IЗ ут) им можно пренебречь. Изменение напряжения UЗИ не вызывает существенных изменений тока затвора, что характерно для обратного тока p-n-перехода.

При работе в пологой области вольтамперной характеристики ток стока при заданном напряжении UЗИ определяется выражением

Введем для количественной характеристики управляющего действия затвора понятие крутизны характеристики

Получаем

Таким образом, крутизна характеристики полевого транзистора уменьшается при увеличении напряжения, приложенного к его затвору.

Усилительные свойства полевых транзисторов характеризуются коэффициентом усиления

который связан с крутизной характеристики и внутренним сопротивлением уравнением

Дифференциальное внутреннее сопротивление транзистора.

Действительно, в общем случае IC = f(UCИ, UЗИ) и

Если при одновременном изменении UСИ и UЗИ ток IC = const, то dIC = 0, откуда

Схемы включения полевых транзисторов в усилительных каскадах:



Постоянное напряжение UCM обеспечивает получение заданного сопротивления канала RCИ и тока стока . При подаче входного усиливаемого напряжения Uвх потенциал затвора меняется, и, соответственно, меняются токи стока и истока, т.е. падение напряжения на нагрузочном резисторе.

Если R >> 1, то Δ>> за счет этого осуществляется усиление сигнала.

Основными преимуществами полевых транзисторов с управляющим p-n-переходом перед биполярными является высокое входное сопротивление …Ом, малые шумы, отсутствие остаточного напряжения между истоком и стоком открытого транзистора, малые нелинейные искажения.

МДП-транзисторы могут быть двух типов:

Со встроенными каналами

С индуцированными каналами.

Транзисторы первого типа могут работать как в режиме обеднения канала носителями заряда, так и в режиме обогащения. Транзисторы второго типа можно использовать только в режиме обогащения.

У МДП-транзисторов металлический затвор изолирован от полупроводника слоем диэлектрика и имеется дополнительный вывод от кристаллической пластинки - подложки.


Управляющее напряжение можно подавать как между затвором и подложкой, так и независимо на подложку и затвор. Под влиянием образующего электрического поля у поверхности полупроводника появляется канал p-типа за счет отталкивания электронов от поверхности вглубь полупроводника в транзисторе с индуцированным каналом. В транзисторе со встроенным каналом происходит расширение или сужение имевшегося канала под действием управляющего напряжения.

Существенным преимуществом МДП-транзисторов является высокое входное сопротивление, достигающее значений

МДП-транзисторы с диэлектриком из диоксида кремния SiO2 называются МОП-транзисторами. МОП-транзисторы с двумя изолированными затворами называются тетродными. Наличие второго затвора позволяет одновременно управлять током транзистора с помощью двух управляющих напряжений.

МДП-структуры специального назначения . Кроме рассмотренных полевых транзисторов, которые выпускаются в виде самостоятельных компонентов, применяется ряд МОП-структур со специфическими свойствами.

В структурах типа металл-нитрит-оксид-полупроводник (МНОП) диэлектрик под затвором - двухслойный: SiO2 - тонкий слой, Si3N4 - толстый слой. При подаче на затвор МНОП-структуры положительного напряжения (28 – 30 B) электроны из подложки туннелируют через тонкий слой SiO2 и захватываются в "ловушки" потенциала кристалла Si3N4. Появляются неподвижные отрицательно заряженные ионы. Созданный ими заряд повышает пороговое напряжение UЗИ пор1. Этот заряд может хранится несколько лет при отключении всех напряжений питания. Если на затвор подать отрицательное напряжение (28 – 30 B) , то накопленный заряд рассасывается. После этого пороговое напряжение для транзистора существенно уменьшается. На основе МНОП-структур выполняются запоминающие элементы, которые в зависимости от записанного в них "заряда" будут иметь малое или большое сопротивление при подаче одинакового напряжения UЗИ порядка 3 − 5B.

МОП-структуры с плавающим затвором и лавинной инжекцией имеют затвор, который выполнен из кристаллического кремния Si и не имеет электрических связей с другими частями структуры. При подаче высокого напряжения на сток или исток транзистора возникает лавинный пробой p-n-перехода, образованного в подложке. При этом электроны приобретают энергии, позволяющие им проникнуть в изолирующий слой и достигнуть затвора. На затворе появляется отрицательный заряд, который вследствие высоких изолирующих свойств SiO2 сохраняется на протяжении многих лет: уменьшается на 25% за 10 лет. Величину заряда выбирают такой, чтобы он обеспечил появление электропроводного канала, соединяющего сток и исток.

Транзистор становится неэлектропроводящим, если убрать электрический заряд с "плавающего" затвора. Для этого область затвора облучают ультрафиолетовым излучением. Мощность его должна быть достаточной для ионизации и возникновения в цепи затвора фототока, в результате чего электроны рекомбиниpуют с дырками и заряд исчезает. Облучение производят через кварцевые окошки в микросхемах.

В лавинно-инжекционных МОП-структурах с плавающим затвором имеется второй затвор. В них стирание информации может производится импульсами напряжения с амплитудой около 30B.

Рассмотренные МОП-структуры используются в микросхемах ПЗУ (постоянных запоминающих устройств), которые можно перепрограммировать.

Основные параметров полевых транзисторов(y-параметры):

1.Крутизна характеристики, проводимость прямой передачи. Она показывает, насколько ампер изменяется IС, если при постоянном UCИ UЗ изменяется на 1В.

2.Выходная проводимость (выходное сопротивление) :

Чаще используют понятие выходное (внутреннее) сопротивление:

3.Входное сопротивление:

4.Проводимость обратной связи:

Все эти параметры определяются по статическим характеристикам транзистора.

Кроме того, есть такой параметр, как статический коэффициент усиления (по напряжению). Он показывает во сколько раз увеличивается UCИ при увеличении UЗИ.

Loading...Loading...