Электроизмерительные приборы и их предназначения. Характеристика средств измерения электрических величин. Электроизмерительные приборы. Типы приборов

Измерение — это процесс определения физической величины с помощью технических средств.

Мера — это средство измерения физической величины заданного размера.

Измерительный прибор — это средство измерения, в котором вырабатывается сигнал, доступный для восприятия наблюдателем.

Меры и приборы подразделяются на образцовые и рабочие. Образцовые меры и служат для поверки по ним рабочих средств измерений. Рабочие меры и приборы служат для практических измерений.

Классификация электроизмерительных приборов

Электроизмерительные приборы можно классифицировать по следующим признакам:

  • методу измерения;
  • роду измеряемой величины;
  • роду тока;
  • степени точности;
  • принципу действия.

Существует два метода измерения. Классификация электроизмерительных приборов по методу измерения:

  1. Метод непосредственной оценки, заключающийся в том, что в процессе измерения сразу оценивается измеряемая величин.
  2. Метод сравнения, или нулевой метод, служащий основой действия приборов сравнения: мостов, компенсаторов.

Классификация электроизмерительных приборов по роду измеряемой величины:

  • для (вольтметры, милливольтметры, гальванометры);
  • для (амперметры, миллиамперметры, гальванометры);
  • для (ваттметры);
  • для измерения энергии (электрические счетчики);
  • для измерения угла сдвига фаз (фазометры);
  • для измерения частоты тока (частотомеры);
  • для (омметры).

Классификация электроизмерительных приборов по роду тока:

Классификация электроизмерительных приборов по степени точности: по степени точности приборы подразделяются на следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; и 4,0. Класс точности не должен превышать приведенной относительной погрешности прибора, которая определяется по формуле:

где А — показания поверяемого прибора; А 0 — показания образцового прибора; A max — максимальное значение измеряемой величины (предел измерения).

Измерением называется процесс нахождения опытным путем значения физической величины с помощью специальных технических средств. Электроизмерительные приборы широко используются при наблюдении за работой электроустановок, при контроле за их состоянием и режимами работы, при учете расхода и качества электрической энергии, при ремонте и наладке электротехнического оборудования.

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов, функционально связанных с измеряемыми физическими величинами в форме, доступной для восприятия наблюдателем или автоматическим устройством.

Электроизмерительные приборы делятся:

  • по виду получаемой информации на приборы для измерения электрических (ток, напряжение, мощность и др.) и неэлектрических (температура, давление и др.) величин;
  • по методу измерения - на приборы непосредственной оценки (амперметр, вольтметр и др.) и приборы сравнения (измерительные мосты и компенсаторы);
  • по способу представления измеряемой информации - на аналоговые и дискретные (цифровые).

Наибольшее распространение получили аналоговые приборы непосредственной оценки, которые классифицируются по признакам: род тока (постоянный или переменный), род измеряемой величины (ток, напряжение, мощность , сдвиг фаз), принцип действия (магнитоэлектрические, электромагнитные, электро- и ферродинамические), класс точности и условия эксплуатации.

Для расширения пределов измерения электрических приборов на постоянном токе используются шунты (для тока) и добавочные сопротивления Rd (для напряжения); на переменном токе трансформаторы тока (тт) и напряжения (тн).

Используемые приборы для измерения электрических величин.

Измерение напряжения осуществляется вольтметром (V), подключаемым непосредственно на зажимы исследуемого участка электрической цепи.

Измерение тока осуществляется амперметром (А), включаемым последовательно с элементами исследуемой цепи.

Измерение мощности (W) и сдвига фаз () в цепях переменного тока производится с помощью ваттметра и фазометра. Эти приборы имеют две обмотки: неподвижную токовую, которая включается последовательно, и подвижную обмотку напряжения, включаемую параллельно.

Для измерения частоты переменного тока (f) применяются частотометры.

Для измерения и учета электрической энергии - счетчики электрической энергии, подключаемые к измерительной цепи аналогично ваттметрам.

Основными характеристиками электроизмерительных приборов являются: погрешность, вариации показаний, чувствительность, потребляемая мощность, время установления показаний и надежность.

Основными частями электромеханических приборов являются электроизмерительная цепь и измерительный механизм.

Измерительная цепь прибора является преобразователем и состоит из различных соединений активного и реактивного сопротивлений и других элементов в зависимости от характера преобразования. Измерительный механизм преобразует электромагнитную энергию в механическую, необходимую для углового перемещения его подвижной части относительно неподвижной. Угловые перемещения стрелки а функционально связано с крутящим и противодействующим моментом прибора уравнением преобразования вида:

к - конструктивная постоянная прибора;

Электрическая величина, под действием которой стрелка прибора отклоняется на угол

На основании данного уравнения можно утверждать, что если:

  1. входная величина Х в первой степени (п=1), то а будет менять знак при изменении полярности, и на частотах, отличных от 0, прибор работать не может;
  2. n=2, то прибор может работать как на постоянном, так и на переменном токе;
  3. в уравнение входит не одна величина, то в качестве входной можно выбирать любую, оставляя остальные постоянными;
  4. две величины являются входными, то прибор можно использовать в качестве множительного преобразователя (ваттметр, счетчик) или делительного (фазометр, частотометр);
  5. при двух или более входных величинах на несинусоидальном токе прибор обладает свойством избирательности в том смысле, что отклонение подвижной части определяется величиной только одной частоты.

Общими элементами являются: отсчетное устройство, подвижная часть измерительного механизма, устройства для создания вращающего, противодействующего и успокаивающего моментов.

Отсчетное устройство имеет шкалу и указатель. Интервал между соседними метками шкалы называют делением.

Цена деления прибора представляет собой значение измеряемой величины, вызывающее отклонение стрелки прибора на одно деление и определяется зависимостями:

Шкалы могут быть равномерными и неравномерными. Область между начальным и конечным значениями шкалы называют диапазоном показаний прибора.

Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано трением в измерительной части механизма, влиянием внешних магнитных и электрических полей, изменением температуры окружающей среды и т.д. Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерений:

Так как абсолютная погрешность не дает представления о степени точности измерений, то используют относительную погрешность:

Поскольку действительное значение измеряемой величины при измерении неизвестно, для определения и можно воспользоваться классом точности прибора.

Амперметры, вольтметры и ваттметры подразделяются на 8 классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор. Например, для класса точности 0,5 приведенная погрешность составит ±0,5%.

Технические характеристики амперметров
Наименование параметра Амперметры Э47 Вольтметры Э47
Система электромагнитная электромагнитная
Способ вывода информации аналоговый аналоговый
Диапазон измерений 0...3000 А 0...600 В
Способ установки на панель щита на панель щита
Способ включения <50 А- непосредственный, >100 А-через трансформатор тока с вторичным током 5 А непосредственный
Класс точности 1,5 1,5
Предел допускаемой основной погрешности приборов, % ±1,5 ±1,5
Номинальное рабочее напряжение, не более 400 В 600 В
Допустимая длительная перегрузка (не более 2 ч) 120% от конечного значения диапазона измерений
Средняя наработка до отказа, не менее, ч 65000 65000
Средний срок службы, не менее, лет 8 8
Температура окружающего воздуха, °С 20±5 20±5
Частота измеряемой величины, Гц 45...65 45...65
Положение монтажной плоскости вертикальное вертикальное
Габариты, мм 72x72x73,5 96x96x73,5 72x72x73,5 96x96x73,5

Электроизмерительные приборы (амперметры и вольтметры) серии Э47

Применяются в низковольтных комплектных устройствах в распределительных электрических сетях жилых, коммерческих и производственных объектов.

Амперметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения силы тока в электрических цепях переменного тока.

Вольтметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения напряжения в электрических цепях переменного тока.

Широкий диапазон измерений: амперметры до 3000 А, вольтметры до 600 В. Класс точности 1.5.

Амперметры, рассчитанные на измерение токов выше 50 А подключают к измеряемой цепи через трансформатор тока с номинальным вторичным рабочим током 5 А.

Принцип действия амперметров и вольтметров серии Э47

Амперметры и вольтметры Э47 относятся к приборам с электромагнитной системой. В составе имеют круглую катушку с помещенными внутрь подвижным и неподвижным сердечниками. При протекании тока через витки катушки, создается магнитное поле, намагничивающее оба сердечника. Вследствие чего.

одноименные полюса сердечников отталкиваются, и подвижный сердечник поворачивает ось со стрелкой. Для защиты от негативного влияния внешних магнитных полей, катушка и сердечники защищены металлическим экраном.

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии поля постоянного магнита и проводников с током, а электромагнитной - на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Электродинамическая система имеет две катушки. Одна из катушек, подвижная, укрепляется на оси и располагается внутри неподвижной катушки.

Принцип действия прибора, возможность его работы в тех или иных условиях, возможные предельные погрешности прибора могут быть установлены по условным обозначениям, нанесенным на циферблат прибора.

Например: (А) - амперметр; (~) - переменный ток в пределах от 0 до 50А; () - вертикального положения, класс точности 1,0 и т.д.

Измерительные трансформаторы тока и напряжения имеют ферромагнитные магнитопроводы, на которых располагаются первичные и вторичные обмотки. Число витков вторичной обмотки всегда больше первичной.

Зажимы первичной обмотки трансформатора тока обозначают буквами Л1 и Л2 (линия), а вторичной - И1 и И2 (измерение). По правилам техники безопасности один из зажимов вторичной обмотки трансформатора тока, так же, как и трансформатора напряжения, заземляют, что делается на случай повреждения изоляции. Первичную обмотку трансформатора тока включают последовательно с объектом, у которого проводят измерения. Сопротивление первичной обмотки трансформатора тока мало по сравнению с сопротивлением потребителя. Вторичная обмотка замыкается на амперметр и токовые цепи приборов (ваттметр, счетчик и т. д.). Токовые обмотки ваттметров, счетчиков и реле рассчитывают на 5А, вольтметры, цепи напряжения ваттметров, счетчиков и обмоток реле - на 100 В.

Сопротивления амперметра и токовых цепей ваттметра невелики, поэтому трансформатор тока работает фактически в режиме короткого замыкания. Номинальный ток вторичной обмотки равен 5А. Коэффициент трансформации трансформатора тока равен отношению первичного тока к номинальному току вторичной обмотки, а у трансформатора напряжения - отношению первичного напряжения ко вторичному номинальному.

Сопротивление вольтметра и цепей напряжения измерительных приборов всегда велико и составляет не менее тысячи Ом. В связи с этим трансформатор напряжения работает в режиме холостого хода.

Показания приборов, включенных через трансформаторы тока и напряжения, необходимо умножать на коэффициент трансформации.

Трансформаторы тока ТТИ

Трансформаторы тока ТТИ предназначены: для применения в схемах учета электроэнергии при расчетах с потребителями; для применения в схемах коммерческого учета электроэнергии; для передачи сигнала измерительной информации измерительным приборам или устройствам защиты и управления. Корпус трансформатора выполнен неразборным и опломбирован наклейкой, что делает невозможным доступ ко вторичной обмотке. Клеммные зажимы вторичной обмотки закрываются прозрачной крышкой, что обеспечивает безопасность при эксплуатации. Кроме того, крышку можно опломбировать. Это особенно важно в схемах учета электроэнергии, так как позволяет исключить несанкционированный доступ к клеммным зажимам вторичной обмотки.

Встроенная медная луженая шина у модификации ТТИ-А - дает возможность подключения как медных, так и алюминиевых проводников.

Номинальное напряжениe - 660 В; номинальная частота сети - 50 Гц; класс точности трансформатора 0,5 и 0,5S; номинальный вторичный рабочий ток - 5А.

Технические характеристики трансформаторов ТТИ
Модификации трансформаторов Номинальный первичный ток трансформатора, А
ТТИ-А 5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 80; 100; 120; 125; 150; 200; 250; 300; 400; 500; 600; 800; 1000
ТТИ-30 150; 200; 250; 300
ТТИ-40 300; 400; 500; 600
ТТИ-60 600; 750; 800; 1000
ТТИ-85 750; 800; 1000; 1200; 1500
ТТИ-100 1500; 1600; 2000; 2500; 3000
ТТИ-125 1500; 2000; 2500; 3000; 4000; 5000

Электронные аналоговые приборы представляют собой сочетание различных электронных преобразователей и магнитоэлектрического прибора и служат для измерения электрических величин. Они обладают высоким входным сопротивлением (малым потреблением энергии от объекта измерения) и высокой чувствительностью. Используются для измерения в цепях повышенной и высокой частоты.

Принцип действия цифровых измерительных приборов основан на преобразовании измеряемого непрерывного сигнала в электрический код, отображаемый в цифровой форме. Достоинствами являются малые погрешности измерения (0.1-0,01 %) в широком диапазоне измеряемых сигналов и высокое быстродействие от 2 до 500 измерений в секунду. Для подавления индустриальных помех они снабжены специальными фильтрами. Полярность выбирается автоматически и указывается на отсчетном устройстве. Содержат выход на цифропечатающее устройство. Используются как для измерения напряжения и тока, так и пассивных параметров - сопротивление, индуктивность, емкость. Позволяют измерять частоту и ее отклонение, интервал времени и число импульсов.

Электроизмерительные приборы востребованы и представлены в большом разнообразии. Они применяются в промышленности, транспортной сфере и других областях деятельности. Устройства имеют особую систему обозначения и имеют классификацию по ряду признаков, которую необходимо знать перед применением приборов.

Конструкция и области применения измерительных приборов

Для измерения различных показателей электрического тока используют специальные приборы. Такие устройства разнообразны и классифицируются по нескольким критериям, что позволяет выбрать оптимальный вариант. Все варианты образуют отдельный класс, называющийся электроизмерительные приборы.

Электроизмерительные приборы многообразны, так как необходимы в разных сферах деятельности

Многие варианты приборов обязательно предполагают наличие дисплея, на котором отображается информация. Также в конструкции присутствуют переключатель или кнопка управления прибором. Разъёмы для подключения кабелей, корпус, кнопка включения/отключения тоже являются элементами электроизмерительных приборов.

Дисплей или циферблат всегда присутствуют на приборах измерения электротока

Устройства разного типа применяют в следующих сферах деятельности:

  • медицина;
  • связь и энергетика;
  • научные исследования;
  • бытовые условия;
  • транспортная промышленность;
  • производство любого типа.

Простые или сложные модели приборов позволяют измерить силу тока и другие показатели электроэнергии. Для бытовых условий применяют простой вариант - счётчик электроэнергии, а в промышленности используются более сложные и профессиональные устройства. Таким образом, для электроизмерительных приспособлений каждого типа характерно определённое назначение.

Принцип работы

Большинство электроизмерительных устройств имеют принцип действия, основанный на том, что электроны двигаются по проводнику электроцепи и создают вокруг себя магнитное поле. Стрелка измерительного приспособления перемещается в этом поле, реагируя на его параметры. Чем ниже показатели магнитной зоны, тем меньше отклонения стрелки.

Шкала и стрелка присутствуют на многих приборах и визуализируют особенности электрического тока

При этом все приборы электроизмерительного типа по принципу действия разделяются на следующие виды:

  • магнитоэлектрические, в которых ток пропускается через особую рамку в виде нескольких витков изолированной проволоки. Она размещена между полюсами постоянного магнита, поля их взаимодейству­ют. Рамка и сидящая на одной с ней оси стрелка перемещаются на определённый угол, который пропорционален напряжению или току. Эти приспособления предоставляют точные данные, но без дополнительных устройств используются для определения небольших значений и лишь тока постоянного типа;
  • в электродинамических устройствах магнитное поле, в котором вращается рамка, получается не благодаря постоянному магниту, а с помощью катушки с током. У этих приборов имеются две катушки: неподвижная и подвижная (рамка, жёстко соединённая со стрелкой). Устройства оптимальны для измерения постоянного и непостоянного вариантов тока;
  • работа тепловых моделей осуществляется в результате нагревания током и удлинения проводников. Приборы используются как для постоянного, так и для тока переменного типа;
  • действие электростатических устройств основано на взаимной силе притяжения пластин. Это осуществляется в результате воздействия на них напряжения.

Видео: принцип работы измерительных приборов

Варианты классификации приборов измерения тока

Все устройства, служащие для определения параметров электрического тока, классифицируются по нескольким признакам. В зависимости от сферы и цели применения подбирают нужный вариант.

Дисплей может быть цифровым или в виде стрелки и шкалы

Виды конструкций

Классификация устройств по типу конструкции предполагает разделение приборов по внешним данным, форме, корпусу, типу дисплея или шкалы. В результате можно выделить несколько вариантов. Одним из них являются щитовые модели, которые представляют собой объёмный щит с кнопками управления и информационным табло.

Цифровые приборы имеют дисплей, отображающий максимально точный результат измерений

Стационарные не подлежат частому перемещению и устанавливаются для контроля параметров энергии в определённой зоне. В отличие от них более мобильны переносные варианты, которые позволяют провести работы в разных местах без необходимости перемещения массивного оборудования.

Классификация по роду измеряемой величины

Все электроизмерительные устройства классифицируются в зависимости от того, какую величину позволяют определить. Это необходимо для всестороннего изучения показателей напряжения, что важно в разных сферах деятельности. В результате классификации по роду определяемой величины можно выделить следующие виды оборудования:

  • амперметры необходимы для измерения тока;
  • омметры служат для определения сопротивлений;
  • ваттметры позволяют узнать мощность;
  • счётчики используют для учёта энергии;
  • частотомеры нужны для определения частот тока переменного типа;
  • угол сдвига фаз измеряют фазометры;
  • узнать малые величины помогают гальванометры;
  • осциллографы определяют часто меняющиеся показатели.

Осциллограф имеет сложную конструкцию, помогающую получить точный результат

Каждый прибор имеет определённое назначение, но многие из них имеют схожий принцип работы. Оборудование может быть разного размера, а производители представляют широкий выбор вариантов.

Разделение по роду тока

Электрический ток может быть нескольких видов и в зависимости от этого подбирают приборы для его измерения. В результате такого подхода можно выделить изделия, предназначенные для измерения и используемые лишь в цепях постоянного тока. Существуют варианты, которые применяют только в цепях с переменным электричеством. Более универсальны модели, подходящие для работы с обеими цепями.

Способы отображения информации

Существует два варианта: цифровые и аналоговые. Под цифровыми устройствами подразумевают приборы, осуществляющие в процессе измерения автоматическое преобразование определяемой величины в дискретную. При этом величина является непрерывной, а полученный результат отображается на цифровом дисплее или регистрируется цифропечатающим оборудованием.

Цифровой дисплей характеризуется чёткостью отображения

Главное преимущество цифровых моделей по сравнению с иными вариантами заключается в том, что полученный результат измерений может быть преобразован математически или физически без повышения погрешности. Одним из представителей такого вида приборов является цифровой вольтметр. Востребованы также амперметры, фазометры, частотомеры.

Аналоговые варианты часто оснащены шкалой и стрелкой. Оборудование характеризуется тем, что при измерении показатель входного сигнала преобразуется в показатель выходного импульса. Результат показывает стрелка, направленная на градуированную шкалу, имеющую определённый предел.

Шкала со стрелкой имеет определённый диапазон измерений

Три блока являются составляющими аналоговой конструкции: блок сравнения, первичный преобразователь, устройство ввода информации. Элементы соединены в систему и взаимосвязаны друг с другом.

Иные варианты систематизации

Электроизмерительные устройства широко используются и классифицируют не только по вышеперечисленным критериям, но и по другим особенностям. Часто разделение осуществляется по следующим параметрам:

  • назначение, то есть оборудование может быть вспомогательным, для измерений, бытового или профессионального применения;
  • система выдачи итогового результата, в зависимости от чего изделия могут быть регистрирующими или с выводом информации на экран;
  • способ измерения. Оборудование может быть использовано для сравнения или оценки показателей.

Обозначения приборов

Производители при маркировке изделий указывают определённые обозначения, которые отражают информацию о принципе действия оборудования. Прописная буква в маркировке указывает на тип работы устройства. Основными являются следующие варианты:

  • «М» или «К» означают, что прибор модернизированный или контактный;
  • «Д» - электродинамическое устройство;
  • «Н» означает, что конструкция самопишущая;
  • «Р» указывает на преобразователи измерительного типа;
  • индукционные устройства обозначаются буквой «И»;
  • «Л» - это логометры.

Разнообразные приборы имеют множество вариантов классификации

При выборе конкретного устройства учитывают обозначения в маркировке. Перед первым использованием нового оборудования требуется его настройка, выполняющаяся согласно инструкции.

Класс точности электроизмерительных устройств

Помимо иных характеристик, важное значение имеет и класс точности, который отражает особенности прибора. Точность зависит от допустимой предельной погрешности, которая может возникнуть в результате конструктивных особенностей конкретного оборудования. Выделяют по ГОСТу такие классы точности, как: 4,0 и 0,05; 0,1 и 0,2, а также 0,5 и 1,0, 1,5 и 2,5. Класс не превышает относительной погрешности устройства, определяющейся по формуле: - ɣ = ∆x / xпр * 100%. При этом ɣ - приведённая погрешность, ∆x - абсолютная погрешность, а xпр является измеряемым параметром.

Видео: классификация электроизмерительного оборудования

Оборудование для измерения разных показателей электротока представлено множеством моделей и типов. Выбор правильного устройства является залогом точных измерений и эффективной работы приборов.

Электронные измерительные приборы обладают повышенным быстродействием, высокой чувствительностью и достаточно широким частотным диапазоном. Применяются они для измерения определенных электрических величин - напряжения, тока, сопротивления и других параметров.

Данные приборы делят на аналоговые и цифровые модели. Отличаются эти модели друг от друга тем, что у них разная форма воспроизведения информации - с помощью цифрового монитора или стрелочки. На сегодняшний день наибольшей популярностью пользуются электронные цифровые измерительные приборы, поскольку механические варианты проигрывают в правильности отображаемой информации. Впрочем, доступная стоимость многих склоняет к покупке именно механических приборов.

Указатели напряжения и индикаторы

Используются для определения наличия или отсутствия тока в сети для электроприборов, мощность которых не более 1000 В. Принцип действия - преобразование электрических сигналов в световые сигналы. На приборе имеется шкала и светоиндикатор, при помощи которых можно просто понять, есть ли в сети напряжение. Если свечение отсутствует, то это говорит об ее обрыве или отсутствии. Также индикаторами можно измерять фазы тока переменного и полярность тока постоянного.

Вольтметр, амперметр, омметр

Используется электронный прибор для измерения силы тока, напряжения, мощности, сопротивления, емкости, индуктивности и т. д. Они могут сочетать в себе преобразователи из измеряемой величины в напряжение постоянное, то есть силу тока, также могут сочетать в себе магнитоэлектрический аппарат и отличаться высокой чувствительностью, широким диапазоном частот и небольшим потреблением мощности.

Через делитель на выход усилителя подводится определяемое напряжение, а напряжение выхода после усилителя вычисляется магнитоэлектрическим аппаратом. Главная погрешность данного вольтметра - 0,5…1,0 процентов.

Вольтметр переменного тока - это электронный прибор, предназначенный для измерения и преобразования переменного напряжения в постоянное напряжение. Вольтметры делят в зависимости от измеряемого переменного напряжения: средних квадратичных значений, средних выпрямительных значений и амплитудных значений.

Омметр не выпускается в виде отдельного прибора, его функции выполняет электронный вольтметр. Омметр оснащен преобразователем, который представляет собой усилитель, окруженный обратной отрицательной связью измеряемым и образцовым резисторами. Следовательно, напряжение, измеряемое электронным вольтметром, пропорционально сопротивлению определяемого резистора. Такая схема пользуется большой популярностью для измерений сопротивления от 10 до 1000 МОм.

Частотомер и осциллограф

Частотомер применяет принцип заряда и разряда конденсатора и сочетается с аналоговым выходным механизмом, предназначенным для определения средней величины силы, протекающей через конденсатор во время его периодической перезарядки относительно определяемой частоты.

Для того, чтобы исследовать поведение сигналов во времени, применяется электронный осциллограф, дающий возможность для непосредственного наблюдения или записывания формы непериодических и периодических сигналов. За счет того, что в осциллографе подвижная часть делается электронным лугом, он практически без инерции и может использоваться для измерения величин с частотой до нескольких сотен мегагерц и непериодических операций, длительность которых достигает доли микросекунд.

Еще эти приборы для измерения тока и напряжения обладают большим входным сопротивлением и высокой чувствительностью. Однако, они обладают и недостатками, а именно невысокой точностью измерения (погрешность 10 процентов), конструктивной и электрической сложностью, высокой стоимостью. Более того, если сравнивать осциллограф с другими электронными измерительными приборами, то он самый сложный в эксплуатации и нуждается в определенной квалификации персонала.

Осциллограф получил широкое распространение благодаря измерениям фазы и частоты электрических колебаний. Кроме того, есть возможность исследовать колебания различных форм.

Как правило, этот прибор используют для непродолжительного измерения тока без разрыва цепи. Благодаря тому, что от определяемой линии подается ток на катушку, есть возможность не разрывать цепь в период работы - это и является первостепенным принципом работы этого электронного прибора. Токоизмерительные клещи могут быть аналоговыми или цифровыми. Основные функции, которые они выполняют: измерения переменного напряжения, постоянного напряжения, сопротивления, переменного тока, температуры.

Это прибор, который сочетает в себе практически все приборы, предназначенные для измерения тока и напряжени», а также других параметров. В нем могут быть и амперметр, и вольтметр, и омметр и подобные электронные приборы. За счет своего простого исполнения и положительных свойств данные мультиметры очень известны уже на протяжении многих лет. Мультиметры бывают различной степени точности, от чего напрямую зависит их стоимость, поэтому перед выбором этого электроизмерительного прибора необходимо определиться с задачами, которые он будет выполнять.

Ремонт электронных приборов

За счет того, что конструкции измерительных приборов разнообразны, описать все процессы разборки и сборки очень трудно. Однако, большинство процессов являются общими для любой конструкции приборов.

Однородные ремонтные процессы могут выполняться специалистами разных квалификаций. Приборы класса 1 - 1,5 - 2,5 - 4 должны ремонтироваться мастерами, квалификация которых имеет 4-6 разряд. Сложные и специальные приборы должны ремонтировать электромеханики 7-8 разряда.

Вообще, процессы разборки и сборки электроизмерительных приборов являются ответственными процессами, поэтому их необходимо выполнять аккуратно и тщательно. В случае небрежной разборки могут портиться отдельные детали, которые будут вести к добавлению новых неисправностей. Перед тем, как начинать разборку, следует продумать общий порядок проведения операций.

Полную разборку электронного прибора выполняют при капитальном ремонте, который связан с перемоткой катушек, рамок, сопротивлений, производством или заменой разрушенных и сгоревших частей. Она предусматривает разделение всех частей прибора между собой.

Когда выполняется средний ремонт, производят неполную разборку всех частей прибора, а ограничиваются лишь выниманием подвижной части, сменой подпятников, дозаправкой кернов, восстановлением подвижной части, регулировкой и подгонкой показаний механизма. Переградуировку во время среднего ремонта следует выполнять лишь в том случае, когда шкала потускнела и загрязнилась. В остальных случаях шкалу следует сохранить с прежними отметками. Показателем качественного среднего ремонта является производство прибора с прежней шкалой.

Для выполнения разборки и сборки приборов потребуются часовые пинцеты, отвертки, малые электрические паяльники, часовые кусачки, овалогубцы, плоскогубцы, специально сделанные ключи и т. д.

После полного ремонта прибора его проверяют, свободно ли движется подвижная часть, осматривается внутренняя часть, и производятся записи показаний отремонтированного и образцового аппарата во время измерений определяемой величины от нуля до максимума и обратно.

Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения.

Классификация

  • Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов:
    • амперметры - для измерения силы электрического тока ;
    • вольтметры - для измерения электрического напряжения ;
    • омметры - для измерения электрического сопротивления ;
    • мультиметры (иначе тестеры, авометры) - комбинированные приборы
    • частотомеры - для измерения частоты колебаний электрического тока;
    • магазины сопротивлений - для воспроизведения заданных сопротивлений ;
    • ваттметры и варметры - для измерения мощности электрического тока ;
    • электрические счётчики - для измерения потреблённой электроэнергии
    • и множество других видов
  • Кроме этого существуют классификации по другим признакам:
    • по назначению - измерительные приборы , меры , измерительные преобразователи , измерительные установки и системы, вспомогательные устройства;
    • по способу представления результатов измерений - показывающие и регистрирующие (в виде графика на бумаге или фотоплёнке, распечатки, либо в электронном виде);
    • по методу измерения - приборы непосредственной оценки и приборы сравнения;
    • по способу применения и по конструкции - щитовые (закрепляемые на щите или панели), переносные и стационарные;
    • по принципу действия:
      • электромеханические:
        • магнитоэлектрические;
        • электромагнитные;
        • электродинамические;
        • электростатические;
        • ферродинамические;
        • индукционные;
        • магнитодинамические;
      • электронные;
      • термоэлектрические;
      • электрохимические.

Графические обозначения по ГОСТ 23217

Обозначения

В зарубежных странах обозначения средств измерений устанавливаются предприятиями-изготовителями, в России (и частично в других странах СНГ) традиционно принята унифицированная система обозначений, основанная на принципах действия электроизмерительных приборов. В состав обозначения входит прописная русская буква, соответствующая принципу действия прибора, и число - условный номер модели. Например: С197 - киловольтметр электростатический. К обозначению могут добавляться буквы М (модернизированный), К (контактный) и другие, отмечающие конструктивные особенности или модификации приборов.

  • В - приборы вибрационного типа (язычковые)
  • Д - электродинамические приборы
  • Е
  • И - индукционные приборы
  • К - многоканальные и комплексные измерительные установки и системы
  • Л - логометры
  • М - магнитоэлектрические приборы
  • Н - самопишущие приборы
  • П - вспомогательные измерительные устройства
  • Р - меры, измерительные преобразователи, приборы для измерения параметров элементов электрических цепей
  • С - электростатические приборы
  • Т - термоэлектрические приборы
  • У - измерительные установки
  • Ф - электронные приборы
  • Х - нормальные элементы
  • Ц - приборы выпрямительного типа
  • Ш - измерительные преобразователи
  • Щ - ?
  • Э - электромагнитные приборы


История

  • В 1733-1737 гг французский учёный Ш. Дюфе создал электроскоп . В 1752-1754 гг его работы продолжили М. В. Ломоносов и Г. В. Рихман в процессе исследований атмосферного электричества. В середине восьмидесятых годов XVIII века Ш. Кулон изобрёл крутильные весы - электростатический измерительный прибор.
  • В первой половине XIX века, когда уже были заложены основы электродинамики (законы Био - Савара и Фарадея , принцип Ленца), построены гальванометры и некоторые другие приборы, изобретены основные методы электрических измерений - баллистический (Э. Ленц, г.), мостовой (Кристи, г.), компенсационный (И. Поггендорф, 1841)
  • В середине XIX века отдельные ученые в разных странах создают меры электрических величин, принимаемые ими в качестве эталонов, производят измерения в единицах, воспроизводимых этими мерами, и даже проводят сличение мер в разных лабораториях. В России в 1848 г. академик Б. С. Якоби предложил в качестве эталона единицы сопротивления применять медную проволоку длиной 25 футов (7,61975 м) и весом 345 гран (22,4932 г), навитую спирально на цилиндр из изолирующего материала. Во Франции эталоном единицы сопротивления служила железная проволока диаметром в 4 мм и длиной в 1 км (единица Бреге). В Германии таким эталоном являлся столб ртути длиной 1 м и сечением 1 мм² при 0° С
  • Вторая половина XIX века была периодом роста новой отрасли знаний - электротехники . Создание генераторов электрической энергии и применение их для различных практических целей побудили крупнейших электротехников второй половины XIX в. заняться изобретением и разработкой различных электроизмерительных приборов, без которых стало немыслимо дальнейшее развитие теоретической и практической электротехники.
    • В 1871 году А. Г. Столетов впервые применил баллистический метод для магнитных измерений и исследовал зависимость магнитной восприимчивости ферромагнетиков от напряженности магнитного поля, создав этим основы правильного подхода к расчету магнитных цепей. Этот метод используется в магнитных измерениях и в настоящее время
    • В 1880-1881 гг. французские инженер Депре и физиолог д’Арсонваль построили ряд высокочувствительных гальванометров с зеркальным отсчетом
    • В г. немецкий инженер Ф. Уппенборн изобрел электромагнитный прибор с эллиптическим сердечником, а в 1886 г. он же предложил электромагнитный прибор с круглой катушкой и двумя цилиндрическими сердечниками
    • В г. немецкий инженер Т. Бругер изобрел логометр
  • В развитии электроизмерительной техники конца второй половины XIX и начала XX ст. значительные заслуги принадлежат М. О. Доливо-Добровольскому . Он разработал электромагнитные амперметры и вольтметры, индукционные приборы с вращающимся магнитным полем (ваттметр, фазометр) и ферродинамический ваттметр

Литература и документация

Литература

  • Б.И.Панев Электрические измерения: Справочник (в вопросах и ответах) - М.:Агропромиздат, 1987
  • Электрические измерения.Средства и методы измерений (общий курс).Под ред. Е. Г. Шрамкова - М.:Высшая школа, 1972
  • Справочник по электроизмерительным приборам ; Под ред. К. К. Илюнина - Л.:Энергоатомиздат, 1983
  • Атамалян Э. Г. Приборы и методы измерения электрических величин - издательство «ДРОФА», 2005
  • Панфилов В. А. Электрические измерения - издательство «Академия», 2008
  • Полищук Е.С. Электрические измерения электрических и неэлектрических величин
  • Н. Н. Евтихиев Измерение электрических и неэлектрических величин - М.: Энергоатомиздат, 1990
  • Шкурин Г. П. Справочник по электро- и электронноизмерительным приборам - М., 1972

Нормативно-техническая документация

  • ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»
  • ГОСТ 30012.1-2002 (МЭК 60051-1-97) «Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 1. Определения и основные требования, общие для всех частей»
  • ГОСТ 9999-94 (МЭК 258-68) «Электроизмерительные самопишущие приборы прямого действия и вспомогательные части к ним»
  • ГОСТ 13607-68 «Приборы и преобразователи электроизмерительные цифровые. Основные термины и определения»
  • ГОСТ 14265-79 «Приборы электроизмерительные аналоговые контактные прямого действия. Общие технические условия»
  • ГОСТ 19875-79 «Приборы электроизмерительные самопишущие быстродействующие. Общие технические условия»
  • ГОСТ 23217-78 (МЭК 51) «Приборы электроизмерительные аналоговые с непосредственным отсчетом. Наносимые условные обозначения»

См. также

  • Измерительная техника
  • Электроизмерения

Wikimedia Foundation . 2010 .

Смотреть что такое "Электроизмерительные приборы" в других словарях:

    Приборы, служащие для непосредственного отсчета какой нибудь электрической величины (тока, напряжения и др.). Э. П. разделяются на системы магнитоэлектрические, электромагнитные, электродинамические, индукционные, тепловые, электростатические и… … Морской словарь

    Электроизмерительные приборы класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений меры, преобразователи … Википедия

    Измерение электрических величин, таких, как напряжение, сопротивление, сила тока, мощность. Измерения производятся с помощью различных средств измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и… … Энциклопедия Кольера

    - (неправ. частотометр) измерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала. Содержание 1 Классификация 2 Электронно счетные частотомеры … Википедия

    Частотомер (неправ. частотометр) измерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала. Содержание 1 Классификация 2 Электронно счетные частотомеры … Википедия

    Совокупность элементов средства измерений, которые обеспечивают необходимое перемещение указателя (стрелки, светового пятна и т. д.) Содержание 1 Электроизмерительные механизмы 1.1 … Википедия

    Два цифровых вольтметра. Верхний коммерческая модель. Нижний сконструировали студенты Берлинского технического университета Вольтметр (вольт + гр. μετρεω измеряю) измерительный при … Википедия

    - (ватт + др. греч. μετρεω «измеряю») измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. Содержание 1 Классификация … Википедия

    - (Ом + др. греч. μετρεω «измеряю») измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах… … Википедия

Книги

  • Общая электротехника , И. А. Данилов , В учебном пособии изложены основы теории электрического и магнитного полей, цепей постоянного и переменного токов, электрических машин, аппаратов и приборов. Основное внимание уделено… Категория:
Loading...Loading...