Полевой транзистор: виды, устройство, особенности. Как работает N-канальный МОП-транзистор с индуцированным каналом

ТЕМА 5. ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Полевой транзистор – это электропреобразовательный прибор, в котором ток, протекающий через канал, управляется электрическим полем, возникающим при приложении напряжения между затвором и истоком, и который предназначен для усиления мощности электромагнитных колебаний.

К классу полевых относят транзисторы, принцип действия которых основан на использовании носителей заряда только одного знака (электронов или дырок). Управление током в полевых транзисторах осуществляется изменением проводимости канала, через который протекает ток транзистора под воздействием электрического поля. Вследствие этого транзисторы называют полевыми.

По способу создания канала различают полевые транзисторы с затвором в виде управляющего р-n- перехода и с изолированным затвором (МДП - или МОП - транзисторы): встроенным каналом и индуцированным каналом.

В зависимости от проводимости канала полевые транзисторы делятся на: полевые транзисторы с каналом р- типа и n- типа. Канал р- типа обладает дырочной проводимостью, а n- типа – электронной.

5.1 Полевые транзисторы с управляющим р- n- переходом

5.1.1 Устройство и принцип действия

Полевой транзистор с управляющим р-n- переходом – это полевой транзистор, затвор которого отделен в электрическом отношении от канала р-n-переходом, смещенным в обратном направлении.

Рисунок 5.1 – Устройство полевого транзистора с управляющим р-n-переходом (каналом n- типа)

Рисунок 5.2 – Условное обозначение полевого транзистора с р-n-переходом и каналом n- типа (а), каналом р- типа (б)

Каналом полевого транзистора называют область в полупроводнике, в которой ток основных носителей заряда регулируется изменением ее поперечного сечения.

Электрод (вывод), через который в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала за счет управляющего напряжения, называют затвором.

Как правило, выпускаются кремниевые полевые транзисторы. Кремний применяется потому, что ток затвора, т.е. обратный ток р-n- перехода, получается во много раз меньше, чем у германия.

Условные обозначения полевых транзисторов с каналом n- и р- типов приведены на рис. 5.2.

Полярность внешних напряжений, подводимых к транзистору, показана на рис. 5.1. Управляющее (входное) напряжение подается между затвором и истоком. Напряжение Uзи является обратным для обоих р-n- переходов. Ширина р-n- переходов, а, следовательно, эффективная площадь поперечного сечения канала, его сопротивление и ток в канале зависят от этого напряжения. С его ростом расширяются р-n- переходы, уменьшается площадь сечения токопроводящего канала, увеличивается его сопротивление, а, следовательно, уменьшается ток в канале. Следовательно, если между истоком и стоком включить источник напряжения Uси, то силой тока стока Iс, протекающего через канал, можно управлять путем изменения сопротивления (сечения) канала с помощью напряжения, подаваемого на затвор. На этом принципе и основана работа полевого транзистора с управляющим р-n- переходом.

При напряжении Uзи = 0 сечение канала наибольшее, его сопротивление наименьшее и ток Iс получается наибольшим.

Ток стока Iс нач при Uзи = 0 называют начальным током стока.

Напряжение Uзи, при котором канал полностью перекрывается, а ток стока Iс становится весьма малым (десятые доли микроампер), называют напряжением отсечки Uзиотс.

5.1.2 Статические характеристики полевого транзистора с управляющим р- n- переходом

Рассмотрим вольт - амперные характеристики полевых транзисторов с р-n- переходом. Для этих транзисторов представляют интерес два вида вольт - амперных характеристик: стоковые и стоко - затворные.

Стоковые (выходные) характеристики полевого транзистора с р-n- переходом и каналом n- типа показаны на рис. 5.3, а. Они отражают зависимость тока стока от напряжения Uси при фиксированном напряжении Uзи: Ic= f(Uси) при Uзи = const.



а) б)

Рисунок 5.3 – Вольт-амперные характеристики полевого транзистора с р-п- переходом и каналом п- типа: а – стоковые (выходные); б – стоко - затворная

Особенностью полевого транзистора является то, что на проводимость канала оказывает влияние как управляющее напряжение Uзи, так и напряжение Uси. При Uси = 0 выходной ток Iс = 0. При Uси > 0 (Uзи = 0) через канал протекает ток Ic, в результате чего создается падение напряжения, возрастающее в направлении стока. Суммарное падение напряжения участка исток-сток равно Uси. Повышение напряжения Uси вызывает увеличение падения напряжения в канале и уменьшение его сечения, а следовательно, уменьшение проводимости канала. При некотором напряжении Uси происходит сужение канала, при котором границы обоих р-n- переходов смыкаются и сопротивление канала становится высоким. Такое напряжение Uси называют напряжением перекрытия или напряжением насыщения Uсинас. При подаче на затвор обратного напряжения Uзи происходит дополнительное сужение канала, и его перекрытие наступает при меньшем значении напряжения Uсинас. В рабочем режиме используются пологие (линейные) участки выходных характеристик.

Стоко - затворная характеристика полевого транзистора показывает зависимость тока Iс от напряжения Uзи при фиксированном напряжении Uси: Ic= f(Uси) при Uси = const (рис. 5.3, б).

5.1.3 Основные параметры

· максимальный ток стока Iсmax (при Uзи = 0);

· максимальное напряжение сток-исток Uсиmax;

· напряжение отсечки Uзиотс;

· внутреннее (выходное) сопротивление ri − представляет собой сопротивление транзистора между стоком и истоком (сопротивление канала) для переменного тока:

при Uзи = const;

· крутизна стоко-затворной характеристики:

при Uси = const,

отображает влияние напряжение затвора на выходной ток транзистора;

· входное сопротивление

при Uси = const транзистора определяется сопротивлением р-n- переходов, смещенных в обратном направлении. Входное сопротивление полевых транзисторов с р-n- переходом довольно велико (достигает единиц и десятков мегаом), что выгодно отличает их от биполярных транзисторов.

5.2 Полевые транзисторы с изолированным затвором

5.2.1 Устройство и принцип действия

Полевой транзистор с изолированным затвором (МДП - транзистор) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика.

МДП - транзисторы (структура: металл-диэлектрик-полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. отсюда другое название этих транзисторов – МОП - транзисторы (структура: металл-окисел-полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012 … 1014Ом).

Принцип действия МДП - транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП - транзисторы выполняют двух типов – со встроенным и с индуцированным каналом.

Рассмотрим особенности МДП - транзисторов со встроенным каналом. Конструкция такого транзистора с каналом n-типа показана на рис. 5.4, а. В исходной пластинке кремния р- типа с относительно высоким удельным сопротивлением, которую называют подложкой, с помощью диффузионной технологии созданы две сильнолегированные области с противоположным типом электропроводности – n. На эти области нанесены металлические электроды – исток и сток. Между истоком и стоком имеется тонкий приповерхностный канал с электропроводностью n- типа. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. На слой диэлектрика нанесен металлический электрод – затвор. Наличие слоя диэлектрика позволяет в таком полевом транзисторе подавать на затвор управляющее напряжение обеих полярностей.



Рисунок 5.4 – Конструкция МДП - транзистора со встроенным каналом n- типа (а); семейство его стоковых характеристик (б); стоко-затворная характеристика (в)

При подаче на затвор положительного напряжения, электрическим полем, которое при этом создается, дырки из канала будут выталкиваться в подложку, а электроны вытягиваться из подложки в канал. Канал обогащается основными носителями заряда – электронами, его проводимость увеличивается и ток стока возрастает. Этот режим называют режимом обогащения.

При подаче на затвор напряжения, отрицательного относительно истока, в канале создается электрическое поле, под влиянием которого электроны выталкиваются из канала в подложку, а дырки втягиваются из подложки в канал. Канал обедняется основными носителями заряда, его проводимость уменьшается и ток стока уменьшается. Такой режим транзистора называют режимом обеднения.

В таких транзисторах при Uзи = 0, если приложить напряжение между стоком и истоком (Uси > 0), протекает ток стока Iснач, называемый начальным и, представляющий собой поток электронов.

Конструкция МДП - транзистора с индуцированным каналом n- типа показана на рис. 5.5, а

Рисунок 5.5 – Конструкция МДП - транзистора с индуцированным каналом n-типа (а); семейство его стоковых характеристик (б); стоко-затворная характеристика (в)

Канал проводимости тока здесь специально не создается, а образуется (индуцируется) благодаря притоку электронов из полупроводниковой пластины (подложки) в случае приложения к затвору напряжения положительной полярности относительно истока. При отсутствии этого напряжения канала нет, между истоком и стоком n-типа расположен только кристалл р- типа и на одном из р-n- переходов получается обратное напряжение. В этом состоянии сопротивление между истоком и стоком очень велико, т.е. транзистор заперт. Но если подать на затвор положительное напряжение, то под влиянием поля затвора электроны будут перемещаться из областей истока и стока и из р- области (подложки) по направлению к затвору. Когда напряжение затвора превысит некоторое отпирающее, или пороговое, значение Uзи пор, то в приповерхностном слое концентрация электронов превысит концентрацию дырок, и в этом слое произойдет инверсия типа электропроводности, т.е. индуцируется токопроводящий канал n-типа, соединяющий области истока и стока, и транзистор начинает проводить ток. Чем больше положительное напряжение затвора, тем больше проводимость канала и ток стока. Таким образом, транзистор с индуцированным каналом может работать только в режиме обогащения.

Условное обозначения МДП - транзисторов приведены на рис. 5.6.



Рисунок 5.6 – Условное обозначение МДП - транзисторов:

а − со встроенным каналом n- типа;

б − со встроенным каналом р- типа;

в − с выводом от подложки;

г − с индуцированным каналом n- типа;

д − с индуцированным каналом р- типа;

е − с выводом от подложки

5.2.2 Статические характеристики МДП - транзисторов

Стоковые (выходное) характеристики полевого транзистора со встроенным каналом n- типа Ic= f(Uси) показаны на рис. 5.4, б.

При Uзи = 0 через прибор протекает ток, определяемый исходной проводимостью канала. В случае приложения к затвору напряжения Uзи < 0 поле затвора оказывает отталкивающее действие на электроны – носители заряда в канале, что приводит к уменьшению их концентрации в канале и проводимости канала. Вследствие этого стоковые характеристики при Uзи < 0 располагаются ниже кривой, соответствующей Uзи = 0.

При подаче на затвор напряжения Uзи > 0 поле затвора притягивает электроны в канал из полупроводниковой пластины (подложки) р- типа. Концентрация носителей заряда в канале увеличивается, проводимость канала возрастает, ток стока Iс увеличивается. Стоковые характеристики при Uзи > 0 располагаются выше исходной кривой при Uзи = 0.

Стоко-затворная характеристика транзистора со встроенным каналом n-типа Ic= f(Uзи) приведена на рис. 5.4, б.

Стоковые (выходные) характеристики Ic=f(Uси) и стоко-затворная характеристика Ic= f(Uзи) полевого транзистора с индуцированным каналом n-типа приведены на рис. 5.5, б; в.

Отличие стоковых характеристик заключается в том, что управление током транзистора осуществляется напряжением одной полярности, совпадающей с полярностью напряжения Uси. Ток Ic= 0 при Uси = 0, в то время как в транзисторе со встроенным каналом для этого необходимо изменить полярность напряжения на затворе относительно истока.

5.2.3 Основные параметры МДП - транзисторов

Параметры МДП - транзисторов аналогичны параметрам полевых транзисторов с р-n- переходом.

Что касается входного сопротивления то МДП - транзисторы имеют лучшие показатели, чем транзисторы с р-n- переходом. Входное сопротивление у них составляет rвх = 1012 … 1014 Ом.

5.2.4 Область применения

Полевые транзисторы применяются в усилительных каскадах с большим входным сопротивлением, ключевых и логических устройствах, при изготовлении интегральных схем и др.

5.3 Основные схемы включения полевых транзисторов

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ) (рис. 5.7).



Рисунок 5.7 – Схемы включения полевого транзистора: а) ОИ; б) ОЗ; в) ОС

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком дает очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не дает усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение.

5.4 Простейший усилительный каскад на полевых транзисторах

В настоящее время широко применяются усилители, выполненные на полевых транзисторах. На рис. 5.9 приведена схема усилителя, выполненного по схеме с ОИ и одним источником питания.



Рисунок 5.9

Режим работы полевого транзистора в режиме покоя обеспечивается постоянным током стока Iсп и соответствующим ему напряжением сток-исток Uсип. Этот режим обеспечивается напряжением смещения на затворе полевого транзистора Uзип. Это напряжение возникает на резисторе Rи при прохождении тока Iсп (URи = Iсп Rи) и прикладывается к затвору благодаря гальванической связи через резистор R3. Резистор Rи, кроме обеспечения напряжения смещения затвора, используется также для температурной стабилизации режима работы усилителя по постоянному току, стабилизируя Iсп. Чтобы на резисторе Rи не выделялась переменная составляющая напряжения, его шунтируют конденсатором Си и таким образом обеспечивают неизменность коэффициента усиления каскада. Сопротивление конденсатора Си на наименьшей частоте сигнала должно быть намного большим сопротивления резистора Rи, которое определяют по выражению:

(5.1)

где Uзип, Iсп – напряжение затвор-исток и ток стока при отсутствии входного сигнала.

Емкость конденсатора выбирается из условия:

(5.2)

где fmin – наинизшая частота входного сигнала.

Конденсатор Ср называется разделительным. Он используется для развязки усилителя по постоянному току от источника входного сигнала.

Емкость конденсатора:

(5.3)

Резистор Rс выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого напряжением между затвором и истоком.

При подаче на вход усилительного каскада переменного напряжения uвх напряжение между затвором и истоком будет изменяться во времени DUзи(t) = uвх; ток стока также будет изменяться во времени, т.е. появится переменная составляющая DIc(t) = ic. Изменение это тока приводит к изменению напряжения между стоком и истоком; его переменная составляющая uс равная по величине и противоположная по фазе падению напряжения на резисторе Rс, является входным напряжением усилительного каскада DUси(t) = uc= uвых = −Rcic.

В усилителях на МДП - транзисторах с индуцированным каналом необходимое напряжение Uзип обеспечивается включением в цепь затвора делителя R1R2 (рис. 5.10).



Рисунок 5.10

(5.4)

От выбранного значения тока делителя Iд = Ес/(R1+R2) зависят сопротивления резисторов R1 и R2. Поэтому ток делителя выбирают исходя из обеспечения требуемого входного сопротивления усилителя.

5.5 Расчет электрических цепей с полевыми транзисторами

В усилителе на полевом транзисторе, схема которого приведена на рис. 5.9, ток стока Ic и напряжение Uси связаны уравнением:

(5.5)

В соответствии с этим уравнением можно построить линию нагрузки (нагрузочную характеристику):

(5.6)

Для ее построения на семействе статических выходных (стоковых) характеристик полевого транзистора достаточно определить две точки:

1-я точка: полагает Ic= 0, тогда Uси = Ес;

2-я точка: полагает Uси = 0, тогда Ic= Ес/(Rc+Rи).

Графическим решением уравнения для выходной цепи рассматриваемого каскада являются точки пересечения линии нагрузки со стоковыми характеристиками.



Рисунок 5.11 – Графический расчет режима покоя каскада на полевом транзисторе при помощи выходных и входной характеристик

Значение тока стока Iс и напряжения Uси зависят также от напряжения затвора Uзи. Три параметра Iсп, Uсип и Uзип определяют исходный режим, или режим покоя усилителя. На выходных характеристиках этот режим отображается точкой По, лежащей на пересечении выходной нагрузочной характеристики с выходной статической характеристикой, снятой при заданном значении напряжения затвора.

Резистор R3 предназначен для подачи напряжения Uзип с резистора Rи между затвором и истоком транзистора. Сопротивление R3 принимают равным 1…2 МОм.

Сопротивление резистора Rи для обеспечения режима покоя, харак-теризуемого значениями Iс = Iсп и Uзи = Uзип (точка По, рис. 5.11), рассчитывают по формуле.

А теперь давайте поговорим о полевых транзисторах. Что можно предположить уже по одному их названию? Во-первых, поскольку они транзисторы, то с их помощью можно как-то управлять выходным током. Во-вторых, у них предполагается наличие трех контактов. И в-третьих, в основе их работы лежит p-n переход. Что нам на это скажут официальные источники?
Полевыми транзисторами называют активные полупроводниковые приборы, обычно с тремя выводами, в которых выходным током управляют с помощью электрического поля. (electrono.ru)

Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов - управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов , как мы помним, выходным током управляет входной ток базы.

Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название - униполярные . Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).

Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором .

Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.

Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два .

Полевой транзистор с управляющим p-n-переходом

Итак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противополжных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод - затвор. Естественно, что между затвором и p-областью под ним (каналом ) возникает p-n переход. А поскольку n-слой значительно у же канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора.

Можно провести следующую аналогию: p-n переход - это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).

Итак, в рабочем режиме полевого транзистора с управляющим p-n переходом напряжение на затворе должно быть либо нулевым (канал открыт полностью), либо обратным.
Если величина обратного напряжения станет настолько большой, что запирающий слой закроет канал, то транзистор перейдет в режим отсечки .

Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока.

Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.

Условные графические изображения полевых транзисторов приведены на рисунке (а - с каналом p-типа, б - с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.

Статические характеристики полевого транзистора с управляющим p-n-переходом
Поскольку в рабочем режиме ток затвора обычно невелик или вообще равен нулю, то графики входных характеристик полевых транзисторов мы рассматривать не будем. Перейдем сразу к выходным или стоковым. Кстати, статическими их называют потому, что на затвор подается постоянное напряжение. Т.е. нет необходимости учитывать частотные моменты, переходные процессы и т.п.



Выходной (стоковой ) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток. На рисунке - график слева.

На графике можно четко выделить три зоны. Первая из них - зона резкого возрастания тока стока. Это так называемая «омическая» область . Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора.

Вторая зона - область насыщения . Она имеет почти линейный вид. Здесь происходит перекрытие канала в области стока, которое увеличивается при дальнейшем росте напряжения исток-сток. Соответственно, растет и сопротивление канала, а стоковый ток меняется очень слабо (закон Ома, однако). Именно этот участок характеристики используют в усилительной технике, поскольку здесь наименьшие нелинейные искажения сигналов и оптимальные значения малосигнальных параметров, существенных для усиления. К таким параметрам относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления. Значения всех этих непонятных словосочетаний будут раскрыты ниже.

Третья зона графика - область пробоя , чье название говорит само за себя.

С правой стороны рисунка показан график еще одной важной зависимости - стоко-затворной характеристики . Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора.

Полевой транзистор с изолированным затвором

Такие транзисторы также часто называют МДП (металл-диэлектрик-полупроводник)- или МОП (металл-оксид-полупроводник)-транзисторами (англ. metall-oxide-semiconductor field effect transistor, MOSFET). У таких устройств затвор отделен от канала тонким слоем диэлектрика. Физической основой их работы является эффект изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.
Устройство транзисторов такого вида следующее. Есть подложка из полупроводника с p-проводимостью, в которой сделаны две сильно легированные области с n-проводимостью (исток и сток). Между ними пролегает узкая приповерхностнаяя перемычка, проводимость которой также n-типа. Над ней на поверхности пластины имеется тонкий слой диэлектрика (чаще всего из диоксида кремния - отсюда, кстати, аббревиатура МОП). А уже на этом слое и расположен затвор - тонкая металлическая пленка. Сам кристалл обычно соединен с истоком, хотя бывает, что его подключают и отдельно.

Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт.

А теперь подадим на затвор отрицательное относительно истока напряжение. Возникшее поперечное электрическое поле «вытолкнет» электроны из канала в подложку. Соответственно, возрастет сопротивление канала и уменьшится текущий через него ток. Такой режим, при котором с возрастанием напряжения на затворе выходной ток падает, называют режимом обеднения .
Если же мы подадим на затвор напряжение, которое будет способствовать возникновению «помогающего» электронам поля «приходить» в канал из подложки, то транзистор будет работать в режиме обогащения . При этом сопротивление канала будет падать, а ток через него расти.

Рассмотренная выше конструкция транзистора с изолированным затвором похожа на конструкцию с управляющим p-n переходом тем, что даже при нулевом токе на затворе при ненулевом напряжении исток-сток между ними существует так называемый начальный ток стока . В обоих случаях это происходит из-за того, что канал для этого тока встроен в конструкцию транзистора. Т.е., строго говоря, только что мы рассматривали такой подтип МДП-транзисторов, как транзисторы с встроенным каналом .

Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором - транзистор с индуцированным (инверсным) каналом . Из названия уже понятно его отличие от предыдущего - у него канал между сильнолегированными областями стока и истока появляется только при подаче на затвор напряжения определенной полярности.

Итак, мы подаем напряжение только на исток и сток. Ток между ними течь не будет, поскольку один из p-n переходов между ними и подложкой закрыт.
Подадим на затвор (прямое относительно истока) напряжение. Возникшее электрическое поле «потянет» электроны из сильнолегированных областей в подложку в направлении затвора. И по достижении напряжением на затворе определенного значения в приповерхностной зоне произойдет так называемая инверсия типа проводимости. Т.е. концентрация электронов превысит концентрацию дырок, и между стоком и истоком возникнет тонкий канал n-типа. Транзистор начнет проводить ток, тем сильнее, чем выше напряжение на затворе.
Из такой его конструкции понятно, что работать транзистор с индуцированным каналом может только находясь в режиме обогащения. Поэтому они часто встречаются в устройствах переключения.

Условные обозначения транзисторов с изолированным затвором следующие:



Здесь
а − со встроенным каналом n- типа;
б − со встроенным каналом р- типа;
в − с выводом от подложки;
г − с индуцированным каналом n- типа;
д − с индуцированным каналом р- типа;
е − с выводом от подложки.

Статические характеристики МДП-транзисторов
Семейство стоковых и стоко-затворная характеристики транзистора с встроенным каналом предсталены на следующем рисунке:



Те же характеристики для транзистора с идуцированным каналом:
Экзотические МДП-структуры
Чтобы не запутывать изложение, хочу просто посоветовать ссылки, по которым о них можно почитать. В первую очередь, это всеми любимая википедия , раздел «МДП-структуры специального назначения». А здесь теория и формулы: учебное пособие по твердотельной электронике, глава 6 , подглавы 6.12-6.15. Почитайте, это интересно!

Общие параметры полевых транзисторов

  1. Максимальный ток стока при фиксированном напряжении затвор-исток.
  2. Максимальное напряжение сток-исток , после которого уже наступает пробой.
  3. Внутреннее (выходное) сопротивление . Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток - константа).
  4. Крутизна стоко-затворной характеристики . Чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе.
  5. Входное сопротивление . Оно определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»). А среди самих полевых транзисторов пальма первенства принадлежит устройствам с изолированным затвором.
  6. Коэффициент усиления - отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока.

Схемы включения



Как и биполярный, полевой транзистор можно рассматривать как четырехполюсник, у которого два из четырех контактов совпадают. Таким образом, можно выделить три вида схем включения: с общим истоком, с общим затвором и с общим стоком. По характеристикам они очень похожи на схемы с общим эмиттером, общей базой и общим коллектором для биполярных транзисторов.
Чаще всего применяется схема с общим истоком (а ), как дающая большее усиление по току и мощности.
Схема с общим затвором (б ) усиления тока почти не дает и имеет маленькое входное сопротивление. Из-за этого такая схема включения имеет ограниченное практическое применение.
Схему с общим стоком (в ) также называют истоковым повторителем . Ее коэффициент усиления по напряжению близок к единице, входное сопротивление велико, а выходное мало.

Отличия полевых транзисторов от биполярных. Области применения

Как уже было сказано выше, первое и главное отличие этих двух видов транзисторов в том, что вторые управляются с помощью изменения тока, а первые - напряжения. И из этого следуют прочие преимущества полевых транзисторов по сравнению с биполярными:
  • высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление;
  • высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей);
  • поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных;
  • высокая температурная стабильность;
  • малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»;
  • малое потребление мощности.
Однако, привсем при этом у полевых транзисторов есть и недостаток - они «боятся» статического электричества, поэтому при работе с ними предъявляют особо жесткие требования по защите от этой напасти.

Где применяются полевые транзисторы? Да практически везде. Цифровые и аналоговые интегральные схемы, следящие и логические устройства, энергосберегающие схемы, флеш-память… Да что там, даже кварцевые часы и пульт управления телевизором работают на полевых транзисторах. Они повсюду, %хабраюзер %. Но теперь ты знаешь, как они работают!

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133493/#comment_4435883 Добавить метки

В МДП-транзисторе с индуцированным каналом отсутствует структурно выраженный токопроводящий канал между истоком и стоком. Этот канал индуцируется в рабочем режиме транзистора соответствующим напряжением Uзи.

Рассмотрим принцип действия МДП-транзистора с

индуцированным каналом p-типа (рис. 3.16).

Рис. 3.16. МДП-транзистор с встроенным каналом: схема включения (а), УГО без вывода и с выводом от подложки (б), схема включения с общим истоком (в)

На электроды транзистора подаѐтся внешнее напряжение. Полярность напряжения показана на рис. 3.16.

В зависимости от величины и полярности напряжения можно рассмотреть три случая:

1. Uзи=0. В этом случае p-n-переход между стоком и подложкой включѐн в обратном направлении и препятствует протеканию тока Iс (Ic=0).

2. Uзи>0. Положительное напряжение затвора относительно

истока и подложки создаѐт электрическое поле, которое через диэлектрик проникает на некоторую глубину в приконтактный слой подложки, выталкивает из него дырки и притягивает электроны, и ток стока равен нулю.

3. Uзи<0. Отрицательное напряжение затвора относительно истока и подложки создаѐт электрическое поле, которое через диэлектрик проникает на некоторую глубину в приконтактный слой подложки, выталкивает из него основные носители заряда (электроны) и притягивает неосновные носители (дырки). Это приводит к обеднению приконтактного слоя электронами и обогащению его дырками. При некоторой величине напряжения Uзи, которое называют пороговым напряжением затвора пор, в приконтактном слое подложки начинается смена типа электропроводности с электронной на дырочную. При дальнейшем увеличении отрицательного напряжения в подложке между истоком и стоком индуцируется токопроводящий канал p-типа (рис. 3.16). При этом большему отрицательному напряжению Uзи соответствует

большая концентрация дырок в канале и, следовательно, большая

проводимость индуцированного канала. Свойства индуцированного канала зависят от степени его обогащения дырками, поэтому говорят, что ПТ с индуцированным каналом работают в режиме обогащения, а сами транзисторы этого типа иногда называют обогащенными.

На рис. 3.17 показано семейство статических выходных

(стоковых) характеристик МДП-транзистора с индуцированным

каналом p-типа Ic=f(Uси) при Uзи=const (рис. 3.17,а) и стокозатворная характеристика Ic=f(Uзи) при Uси=const (рис. 3.17,б). Последнюю характеристику, как и в предыдущих случаях, можно

построить по точкам, определяющим значения Ic при Uси=const иотс

параметра напряжения отсечки

вводят параметр – пороговое

значение затвора зи

Наличие диэлектрика, изолирующего

затвор от канала, увеличивает на несколько порядков входное сопротивление МДП-транзисторов (до 1015 Ом).

Рис. 3.17. Статические характеристики МДП-транзистора с индуцированным каналом p-типа: входная (а), выходная (б)

Таблица 3.3


У всех типов МДП-транзисторов потенциал подложки относительно истока, если она с ним не соединена, оказывает влияние на их параметры и ВАХ. По своему воздействию на проводимость канала подложка выполняет роль второго затвора, при этом p-n-переход исток-подложка включается в обратном направлении.

МДП-транзисторы различных типов имеют различное условное графическое обозначение на схемах, разные полярности электродных напряжений относительно истока и разные режимы работы (табл. 3.3).

4. ТИРИСТОРЫ

Термин ―тиристор‖ обозначает любой полупроводниковый ключевой прибор, два возможных состояния которого (закрытое и открытое) обусловлены внутренней положительной обратной связью в многослойной структуре.

Материал взят из книги Полупроводниковые приборы в системах транспортной телематики (Асмолов, Г.И.)


ПОЛЕВЫЕ ТРАНЗИСТОРЫ


Полевой транзистор – это полупроводниковый преобразовательный прибор, в котором ток, текущий через канал, управляется электрическим полем, возникающим при приложении напряжения между затвором и истоком. Предназначен для усиления мощности электромагнитных колебаний.

Полевые транзисторы применяются в усилительных каскадах с большим входным сопротивлением, ключевых и логических устройствах, при изготовлении микросхем.

Принцип действия полевых транзистор ов снован на использовании носителей заряда только одного знака (электронов или дырок). Управление током, осуществляется изменением проводимости канала, через который протекает ток транзистора под воздействием электрического поля. Поэтому эти транзисторы называют полевыми.

По способу создания канала различают полевые транзисторы с затвором в виде управляющего р- n - перехода и с изолированным затвором (МДП - или МОП - транзисторы): встроенным каналом и индуцированным каналом.

В зависимости от проводимости канала полевые транзисторы делятся на полевые транзисторы с каналом р- типа и полевые транзисторы с каналом n - типа. Канал р- типа обладает дырочной проводимостью, а n - типа – электронной.

Полевой транзистор с управляющим р- n - переходом – это полевой транзистор, затвор которого отделен в электрическом отношении от канала р- n -переходом, смещенным в обратном направлении.

Устройство полевого транзистора с управляющим р- n -переходом (каналом n - типа)

Условное обозначение полевого транзистора с р- n -переходом и каналом n - типа (а), каналом р- типа (б)

Каналом полевого транзистора называют область в полупроводнике, в которой ток основных носителей заряда регулируется изменением ее поперечного сечения. Электрод, через который в канал входят носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда - сток. Электрод, для регулирования поперечного сечения канала за счет управляющего напряжения - затвор.

Управляющее (входное) напряжение подается между затвором и истоком. Напряжение U зи является обратным для обоих р- n - переходов. Ширина р- n - переходов, а, следовательно, эффективная площадь поперечного сечения канала, его сопротивление и ток в канале зависят от этого напряжения. С его ростом расширяются р- n - переходы, уменьшается площадь сечения токопроводящего канала, увеличивается его сопротивление, а, следовательно, уменьшается ток в канале. Следовательно, если между истоком и стоком включить источник напряжения U си, то силой тока стока I с , протекающего через канал, можно управлять путем изменения сопротивления (сечения) канала с помощью напряжения, подаваемого на затвор. На этом принципе и основана работа полевого транзистора с управляющим р- n - переходом.

При напряжении U зи = 0 сечение канала наибольшее, его сопротивление наименьшее и ток I с получается наибольшим. Ток стока I с нач при U зи = 0 называют начальным током стока. Напряжение U зи , при котором канал полностью перекрывается, а ток стока I с становится весьма малым (десятые доли микроампер), называют напряжением отсечки U зи отс .

Статические характеристики полевого транзистора с управляющим р- n - переходом

Стоковые (выходные) характеристики полевого транзистора с р- n - переходом и каналом n - типа, отражают зависимость тока стока от напряжения U си при фиксированном напряжении U зи : I c = f (U си ) при U зи = const .



Вольт-амперные характеристики полевого транзистора с р-п- переходом и каналом п- типа: а – стоковые; б – стокозатворная

Особенностью полевого транзистора является то, что на проводимость канала оказывает влияние и управляющее напряжение U зи , и напряжение U си . При U си = 0 выходной ток I с = 0. При U си > 0 (U зи = 0) через канал протекает ток I c , в результате создается падение напряжения, возрастающее в направлении стока. Суммарное падение напряжения участка исток-сток равно U си . Повышение напряжения U си вызывает увеличение падения напряжения в канале и уменьшение его сечения, а следовательно, уменьшение проводимости канала. При некотором напряжении U си происходит сужение канала, при котором границы обоих р- n - переходов сужаются и сопротивление канала становится высоким. Такое напряжение U си называют напряжением насыщения U си нас . При подаче на затвор обратного напряжения U зи происходит дополнительное сужение канала, и его перекрытие наступает при меньшем значении напряжения U си нас . В рабочем режиме используются пологие участки выходных характеристик.

Полевые транзисторы с изолированным затвором

У полевого транзистора с изолированным затвором (МДП - транзистор), затвор отделен в электрическом отношении от канала слоем диэлектрика. МДП - транзисторы в качестве диэлектрика используют оксид кремния SiO 2. Другое название таких транзисторов – МОП - транзисторы (металл-окисел-полупроводник).

Принцип действия МДП - транзисторов основан на изменении проводимости поверхностного слоя полупроводника под воздействием поперечного электрического поля. Поверхностный слой, является токопроводящим каналом этих транзисторов. МДП - транзисторы выполняют двух типов – со встроенным каналом и с индуцированным каналом.


Конструкция МДП - транзистора со встроенным каналом n -типа. В исходной пластинке кремния р- типа с относительно высоким удельным сопротивлением, с помощью диффузионной технологии созданы две легированные области с противоположным типом электропроводности – n . На эти области нанесены металлические электроды – исток и сток. Между истоком и стоком имеется поверхностный канал с электропроводностью n - типа. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем диэлектрика. На этот слой нанесен металлический электрод – затвор. Наличие слоя диэлектрика позволяет подавать на затвор управляющее напряжение обеих полярностей.



При подаче на затвор положительного напряжения, создающимся электрическим полем дырки из канала будут выталкиваться в подложку, а электроны - из подложки в канал. Канал обогащается – электронами, и его проводимость увеличивается при возрастании ток стока. Это называется режим обогащения.

При подаче на затвор отрицательного напряжения, относительно истока, в канале создается электрическое поле, под влиянием которого электроны выталкиваются из канала в подложку, а дырки втягиваются из подложки в канал. Канал обедняется основными носителями заряда, проводимость уменьшается, а ток стока уменьшается. Такой режим транзистора называют режимом обеднения.

В таких транзисторах при U зи = 0, если приложить напряжение между стоком и истоком (U си > 0), протекает ток стока I с нач , называемый начальным и, представляющий собой поток электронов.

Канал проводимости тока не создается, а образуется благодаря притоку электронов из полупроводниковой пластины, при приложения к затвору напряжения положительной полярности относительно истока. При отсутствии этого напряжения канала нету, и между истоком и стоком n -типа расположен только кристалл р- типа, а на одном из р- n - переходов получается обратное напряжение. В этом состоянии сопротивление между истоком и стоком велико, и транзистор заперт. Но при подаче на затвор положительное напряжение, под влиянием поля затвора электроны будут перемещаться из областей истока и стока и из р- области к затвору. Когда напряжение затвора превысит пороговое значение U зи пор , в поверхностном слое концентрация электронов превысит концентрацию дырок, и произойдет инверсия типа электропроводности, индуцируется токопроводящий канал n -типа, соединяющий области истока и стока. Транзистор начинает проводить ток. Чем больше положительное напряжение затвора, тем больше проводимость канала и ток стока. Транзистор с индуцированным каналом может работать только в режиме обогащения.



Условное обозначение МДП - транзисторов:

а − со встроенным каналом n - типа;

б − со встроенным каналом р- типа;

в − с выводом от подложки;

г − с индуцированным каналом n - типа;

д − с индуцированным каналом р- типа;

е − с выводом от подложки.

Статические характеристики полевых МДП - транзисторов.

При U зи = 0 через прибор протекает ток, определяемый исходной проводимостью канала. В случае приложения к затвору напряжения U зи < 0 поле затвора оказывает отталкивающее действие на электроны – носители заряда в канале, что приводит к уменьшению их концентрации в канале и проводимости канала. Вследствие этого стоковые характеристики при U зи < 0 располагаются ниже кривой, соответствующей U зи = 0.

При подаче на затвор напряжения U зи > 0 поле затвора притягивает электроны в канал из полупроводниковой пластины р- типа. Концентрация носителей заряда в канале увеличивается, проводимость канала возрастает, ток стока I с увеличивается. Стоковые характеристики при U зи > 0 располагаются выше исходной кривой при U зи = 0.

Отличие стоковых характеристик заключается в том, что управление током транзистора осуществляется напряжением одной полярности, совпадающей с полярностью напряжения U си . Ток I c = 0 при U си = 0, в то время как в транзисторе со встроенным каналом для этого необходимо изменить полярность напряжения на затворе относительно истока.

Параметры МДП - транзисторов аналогичны параметрам полевых транзисторов с р- n - переходом. По входному сопротивлению МДП - транзисторы имеют лучшие показатели, чем транзисторы с р- n - переходом.


схемы включения

Полевой транзистор можно включать с общим истоком-а (ОИ), общим стоком-в (ОС) и общим затвором-б (ОЗ).




Чаще всего применяется схема с ОИ. Каскад с общим истоком дает очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не дает усиления тока, и поэтому усиление мощности в ней меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем имеет ограниченное применение.

усилительный каскад на полевых транзисторах



Схема усилителя, выполненного по схеме с ОИ .

Транзистор в режиме покоя обеспечивается постоянным током стока I сп и соответствующим ему напряжением сток-исток U сип . Этот режим обеспечивается напряжением смещения на затворе полевого транзистора U зип . Это напряжение возникает на резисторе R и при прохождении тока I сп (U R и = I сп R и ) и прикладывается к затвору благодаря гальванической связи через резистор R 3 . Резистор R и , кроме обеспечения напряжения смещения затвора, используется также для температурной стабилизации режима работы усилителя по постоянному току, стабилизируя I сп . Чтобы на резисторе R и не выделялась переменная составляющая напряжения, его шунтируют конденсатором С и. Этим и обеспечивают постоянство коэффициента усиления каскада.

Элементная база полупроводниковых элементов постоянно растет. Каждое новое изобретение в этой области, по сути дела, меняет все представление об электронных системах. Меняются схемотехнические возможности в проектировании, появляются новые устройства на их основе. С момента изобретения первого транзистора (1948 г), прошло уже немало времени. Были изобретены структуры "p-n-p" и "n-p-n", Со временем появился и МДП-транзистор, работающий по принципу изменения электрической проводимости приповерхностного полупроводникового слоя под действием электрического поля. Отсюда и еще одно название этого элемента - полевой.

Сама аббревиатура МДП (металл-диэлектрик-полупроводник) характеризует внутреннее строение этого прибора. И действительно, затвор у него изолирован от стока и истока тонким непроводящим слоем. Современный МДП-транзистор имеет длину затвора, равную 0,6 мкм. Через него может проходить только электромагнитное поле - вот оно и влияет на электрическое состояние полупроводника.

Давайте рассмотрим, как работает и выясним, в чем же его основное отличие от биполярного “собрата”. При появлении необходимого потенциала на его затворе появляется электромагнитное поле. Оно влияет на сопротивление перехода сток-исток перехода. Вот некоторые преимущества, которые дает использование этого прибора.

При проектировании и работе с этими элементами, необходимо учитывать, что МДП-транзисторы очень чувствительны к перенапряжению в схеме и То есть прибор может выйти из строя при прикосновении к управляющим выводам. При монтаже или демонтаже используйте специальное заземление.

Перспективы в использовании этого прибора очень хорошие. Благодаря своим уникальным свойствам, он нашел широкое применение в различной электронной аппаратуре. Инновационным направлением в современной электронике является использование силовых IGBT-модулей для работы в различных цепях, в том числе, и индукционных.

Технология их производства постоянно совершенствуется. Ведутся разработки по масштабированию (уменьшению) длины затвора. Это позволит улучшить и так уже неплохие эксплуатационные параметры прибора.

Loading...Loading...